
Ari Danesh
ari@sidefx.com

H13 - HDA Development Part 03 & 04
VOP HDAs, Python, and Script Nodes

mailto:ari@sidefx.com

Agenda

Part 03

 Python SOP

 Unix SOP (Python Script)

 Script SOP (HScript)

Part 04

 Creating a Shelf Tool (Python)

 Creating a VOP Node (VEX Script)

 Help Cards Part 02

Pre-Requisites

Familiarity with SOPs and VOPs

Some knowledge of Python, VEX, and HScript

Understanding of contents in:

 Creating Houdini Digital Assets Part 01 & Part 02
http://www.sidefx.com/index.php?option=com_content&task=view&id=2677&Itemid=132

http://www.sidefx.com/index.php?option=com_content&task=view&id=2677&Itemid=132

Disclaimer

I am no expert in Python or Shell Scripting

Many of you can run circles around me in your knowledge

This workshop focuses on how to use Python, VEX, and HScript to create digital
assets and inline code for Houdini

Inline Tools

Part 03

Just working are way up to HDAs

Python SOP

What is the Python SOP?

What do we want to accomplish with the Python SOP?

Just to get our feet wet with some of the different
modules in Python you we will recreate the Mountain
SOP

 “I know, I know… How many times will we do a
Mountain SOP “

I promise better examples as the workshop progresses

Setup

At the Object Level drop down a Grid - name: Surface_To_Deform

Dive Inside

 Grid - ZX plane

 Size 10,10

 Divisions 100,100

 Append a NULL, Name - SURFACE_OUT

Setup (cont.)

At the Object Level drop down a Geometry Object - name:
Surface_Deformer

Dive Inside

 Drop down an object merge - Point to SURFACE_OUT

 Append a Python SOP

 (Optional) - Append a Null, Name: OUT_SURFACE_DEFORMED

Looking at the Python SOP

The Python Text Edit area has two lines of code
already entered:

get the current node

node = hou.pwd()

get the geometry in the current node

geo = node.geometry()

hou

Module containing all the sub-modules, classes, and
functions to access Houdini

!

hou.pwd() - If called from an evaluating parm, return
the node containing the parm. Otherwise, return
Houdini’s global current node. You can change this
current node with hou.cd

This function is a shortcut for writing hou.node(".").

hou.Geometry

Step 01 - Preset Menu

Click on the preset menu and select “Move Points Up”

The code in the text editor updates

geo.points() # create a tuple of all points in the geometry

hou.Vector3(0,1,0) # A sequence of 3 floating point values, with associated
mathematical operations.

point.setPosition(pos) update the original point position to the new location

Click on the presets drop
down menu and select
the one preset available

Step02 - Add User Control

Create a spare parameter

 name - amplitude

 label - Amplitude

Modify Code - To read the spare parameter

hou.parm()- Given a path string, return a Parm object.

Return None if the path does not refer to a parameter.

amplitude = hou.parm(“amplitude”).eval()

eval() - Evaluates this parameter at the current frame and
returns the result.

#updating the old position to the new position

point.setPosition(pos)

Step 03 - Adding Noise

Adding Noise to the Position

We will start by modifying the code to update the
position by adding 3D Noise and multiplying it by the
spare parameter “amplitude”

pos += hou.hmath.noise3d(pos)*amplitude

Note: The rest of the steps for this example we will be
working on creating the equivalent of a Mountain SOP

hou.hMath module

Houdini and 3D related math functions. You can still use Python’s Math module.

!

noise3d(self, pos) → hou.Vector3

Given a sequence of 1 to 4 floats representing a position in N-dimensional space,
return a hou.Vector3 object representing the vector noise at the given position.

This function matches the output of the noise function from VEX.

hou.hMath module (cont.)

Key functions
buildTranslate(values) → hou.Matrix4!
buildRotate(values, order=xyz) → hou.Matrix4!
buildScale(values) → hou.Matrix4!
buildShear(values) → hou.Matrix4!
buildTransform(values_dict, transform_order="srt", rotate_order="xyz") → hou.Matrix4!
!
degToRad(degrees) → float!
radToDeg(radians) → double!
!
clamp(value, min, max) → float!
wrap(value, min, max)!
sign(value) → int!
smooth(value, min, max) → float!
fit(value, old_min, old_max, new_min, new_max) → float!
fit01(value, new_min, new_max) → float!
fit10(value, new_min, new_max) → float!
fit11(value, new_min, new_max) → float!
rand(seed) → float!
noise1d(self, pos) → float!
noise3d(self, pos) → hou.Vector3

Key Point - All the Math functionality you are
used to in HScript is here in hou.hMath	

!
For more generic math functions use Python’s
math module.

http://localhost:48626/hom/hou/Matrix4
http://localhost:48626/hom/hou/Matrix4
http://localhost:48626/hom/hou/Matrix4
http://localhost:48626/hom/hou/Matrix4
http://localhost:48626/hom/hou/Matrix4
http://localhost:48626/hom/hou/Vector3

Step 04 - Adding an Interrupt

If you are iterating through a large data set Houdini may
become sluggish or seem “hung.”

It is a good idea to add logic to be able break out of the
for loop.

The Houdini convention to stop cooking is to use the
“ESC” key

In the loop add:

if hou.updateProgressAndCheckForInterrupt():

 break

hou.updateProgressAndCheckForInterrupt

Deprecated

Interrupt - The New Method

with hou.InterruptableOperation("Performing Tasks", open_interrupt_dialog=True) as operation:

 count = 0;

 num_points = len(geo.points())

 for point in geo.points():

 pos = point.position()

 count += 1

 # we use the hmath library to calculate noise 3D

 # the hmath library is used for Houdini and 3D related math functions.

 # You can still use Python’s Math module

 noise = hou.hmath.noise3d(pos)

 pos += hou.hmath.noise3d(pos)*amplitude

 point.setPosition(pos)

 # Update operation progress.

 percent = float(count) / float(num_points)

 operation.updateProgress(percent)

Nest the for…loop insite a “with” statement	

Need to add variable “count” since “point” in
for loop is a hou.Point object which can not be
cast to float	

num_points - geo.points is a list of Point
Objects so we need a float to calculate
percentage

Nest the for…loop insite a “with” statement	

Need to add variable “count” since “point” in
for loop is a hou.Point object which can not be
cast to float	

num_points - geo.points is a list of Point
Objects so we need a float to calculate
percentage

Step 05 - Adding Normals

Not everything has to be done in the Python SOP

Drop down a Point Wrangle

 @N = @N; // establish normals

Modify Code to read in the point attribute “N”

 normal_attr = geo.findPointAttrib("N")

Some hou.Geometry Functions
findPointAttrib(self, name) → hou.Attrib or None
Look up a point attribute by name. Returns the corresponding hou.Attrib object, or None if no attribute exists with that name.

Note that the point position attribute is named P and is 3 floats in size. Also, the point weight attribute is named Pw and is 1
float in size.
These attributes always exist in HOM, even though they are not listed by Houdini’s UI.

findPrimAttrib(self, name) → hou.Attrib or None
Look up a primitive attribute by name. Returns the corresponding hou.Attrib object, or None if no attribute exists with that
name.

deletePoints(self, points)
Delete a sequence of points. You would typically call this method from the code of a Python-defined SOP.

findPointGroup(self, name) → hou.PointGroup or None
Return the point group with the given name, or None if no such group exists.

pointGroups(self) → tuple of hou.PointGroup
Return a tuple of all the point groups in the geometry.
The following function returns the names of all the groups in the geometry:

def pointGroupNames(geometry):!
 return [group.name() for group in geometry.pointGroups()]!
!
createPointGroup(self, name, is_ordered=False) → hou.PointGroup
Create a new point group in this geometry.

http://localhost:48626/hom/hou/Attrib
http://localhost:48626/hom/hou/Attrib
http://localhost:48626/hom/hou/Attrib
http://localhost:48626/hom/hou/Attrib
http://localhost:48626/hom/hou/PointGroup
http://localhost:48626/hom/hou/PointGroup
http://localhost:48626/hom/hou/PointGroup

Adding Normals (cont.)

Fetch the point Normal on input geometry

 normal_attr = geo.findPointAttrib("N")

 # it is good form to convert strings to proper Vector3() data types

 v = hou.Vector3(point.attribValue(normal_attr))

 v = v.normalized()

length(self) → float
Interpret this vector as a direction vector and return its length. The result is the same as math.sqrt(self[0]**2 + self[1]**2 + self[2]**2).

lengthSquared(self) → float
Interpret this vector as a direction vector and return the square of its length. The result is the same as self[0]**2 + self[1]**2 + self[2]**2.

normalized(self) → hou.Vector3
Interpret this vector as a direction and return a vector with the same direction but with a length of 1. If the vector’s length is 0 (or close to it), the result is the original vector.

For vectors with non-zero lengths, this method is equivalent to self * (1.0/self.length()).

distanceTo(self, vector3) → float
Interpret this vector and the argument as 3D positions, and return the distance between them. The return value is equivalent to (self - vector3).length().

dot(self, vector3) → float
Return the dot product between this vector and the one in the parameter. This value is equal to self[0]*vector3[0] + self[1]*vector3[1] + self[2]*vector3[2], which is
also equal to self.length() * vector3.length() * math.cos(hou.hmath.degToRad(self.angleTo(vector3)))

See Wikipedia’s dot product page.

cross(self, vector3) → hou.Vector3
Return the cross product of this vector with another vector. The return value is a vector that is perpendicular to both vectors, pointing in the direction defined by the right-hand rule, with
length self.length() * vector3.length() * math.sin(hou.hmath.degToRad(self.angleTo(vector3))).

See Wikipedia’s cross product page.

angleTo(self, vector3) → float
Interprets this Vector3 and the parameter as directions and returns the angle (in degrees) formed between the two vectors when you place the origins at the same location

http://localhost:48626/hom/hou/
http://en.wikipedia.org/wiki/Dot_product
http://localhost:48626/hom/hou/
http://en.wikipedia.org/wiki/Cross_product

Code So far…node = hou.pwd()
geo = node.geometry()
!
Add code to modify contents of geo.
!
hou.parm will grab the parameter object but will not evaluate the value.
You need the eval() function to grab the value
amplitude = hou.parm("amplitude").eval()
!
notice you can use the built in "Python Shell" to print out values
print amplitude
!
for point in geo.points():
 pos = point.position()
!
 # Fetch the point Normal on input geometry
 normal_attr = geo.findPointAttrib("N")
 # it is good form to convert 3 floats to proper Vector3() data types

 v = hou.Vector3(point.attribValue(normal_attr))
 v = v.normalized()
 print v
 # we use the hmath library to calculate noise 3D
 # the hmath library is used for Houdini and 3D related math functions.
 # You can still use Python’s Math module
 noise = hou.hmath.noise3d(pos)
 pos += v*noise*amplitude
 point.setPosition(pos)
!
 # Check if the user pressed Escape: If this for loop was iterating
 # over a large data set the artist might want to escape out of it
 if hou.updateProgressAndCheckForInterrupt():
 break

Step06 - Calculating the Magnitude of the Vector

for point in geo.points():
 pos = point.position()
 # Calculate noise using hou.hmath.noise3d() method
 noise = hou.hmath.noise3d(pos)
 # Calculate magnitude of vector
 noise_magnitude = noise.length()
 noise_magnitude = hou.hmath.fit01(noise_magnitude, -1, 1)

hou Fit Functions

fit(value, old_min, old_max, new_min, new_max) → float
Returns a number between new_min and new_max that is relative to the value between the  
range old_min and old_max. If the value is outside the old_min to old_max range, it will be clamped to the new range.

>>> hou.hmath.fit(3, 1, 4, 5, 20)!
15.0!
fit01(value, new_min, new_max) → float
Returns a number between new_min and new_max that is relative to the value between the range 0 and 1.  
If the value is outside the 0 to 1 range, it will be clamped to the new range.

This function is a shortcut for hou.hmath.fit(value, 0.0, 1.0, new_min, new_max).

fit10(value, new_min, new_max) → float
Returns a number between new_min and new_max that is relative to the value between the range 1 to 0.  
If the value is outside the 1 to 0 range, it will be clamped to the new range.

This function is a shortcut for hou.hmath.fit(value, 1.0, 0.0, new_min, new_max).

fit11(value, new_min, new_max) → float
Returns a number between new_min and new_max that is relative to the value between the range -1 to 1.  
If the value is outside the -1 to 1 range, it will be clamped to the new range.

This function is a shortcut for hou.hmath.fit(value, -1.0, 1.0, new_min, new_max).

Fit01

Step 06 - Putting it All Together
node = hou.pwd()	

geo = node.geometry()	

# Add code to modify contents of geo.	

 	

# Add a new point attribute called noise_weight to the geometry	

noise_weight = geo.addAttrib(hou.attribType.Point, "noise_weight", 0)	

!
# hou.parm will grab the parameter object but will not evaluate the value. 	

#You need the eval() function to grab the value	

amplitude = hou.parm("amplitude").eval() 	

!
for point in geo.points():	

 pos = point.position()	

 # Calculate noise using hou.hmath.noise3d() method	

 noise = hou.hmath.noise3d(pos)	

 # Calculate magnitude of vector	

 noise_magnitude = noise.length()	

 noise_magnitude = hou.hmath.fit01(noise_magnitude, -1, 1)	

 # Fetch the point Normal on input geometry	

 normal_attr = geo.findPointAttrib("N")	

 # convert 3 floats to proper Vector3() data types	

 v = hou.Vector3(point.attribValue(normal_attr))	

 v = v.normalized()	

 pos += v * noise_magnitude * amplitude	

 point.setPosition(pos)	

 print amplitude	

 # add noise_magnitude to the geometry attribute noise_weight	

 point.setAttribValue(noise_weight, 1)	

!
 # Check if the user pressed Escape:	

 if hou.updateProgressAndCheckForInterrupt():	

 break

Position is updated to the normalized normal
* noise length * user defined amplitude

point.attribValue

attribValue(self, name_or_attrib) → int , float , str or tuple
Return value stored in this point for a particular attribute. The attribute may be specified by name or by hou.Attrib object.

Looking up an attribute value using a hou.Attrib object is slightly faster than looking it up by name. When looking up attribute values inside a loop, look up the
hou.Attrib object outside the loop, and pass it into this method.

Note that the point position attribute is named P and is 4 floats in size. This attribute always exists.

When looking up the attribute values of all points, it is faster to call hou.Geometry.pointFloatAttribValues or hou.Geometry.pointFloatAttribValuesAsString
than to call this method for each point in the geometry.

Raises hou.OperationFailed if no attribute exists with this name.

http://localhost:48626/hom/hou/Attrib
http://localhost:48626/hom/hou/Attrib
http://localhost:48626/hom/hou/Attrib
http://localhost:48626/hom/hou/Geometry#pointFloatAttribValues
http://localhost:48626/hom/hou/Geometry#pointFloatAttribValuesAsString
http://localhost:48626/hom/hou/OperationFailed

Unix Node

Unix Node

Processes geometry using an external program.

This operator lets you write an external program/script that reads in .geo or .bgeo
formatted data|/io/geo (Houdini automatically detects the format), manipulates the
data, and writes out modified .geo or .bgeo (set using the Output format parameter).

Not used that often
anymore	

Good for sending
geometry data to

Houdini stand alone
programs and getting

data back

Despite its name, the
unix command works

on non-UNIX operating
systems.	

In the Old Days…

Perl scripts were used extensively with the Unix SOP to convert geometry into other
formats or allow Command Line Tools to process the data

We will be more modern….

We will create a Python Script to be executed within a Unix SOP

Unix Node

Unix Command

Force to Execute
Command

Ascii or Bin

Where does convert
come from?	

!
Answer: Next Slide

Side Note - $HFS/bin

Houdini stand alone commands are located at $HFS/bin

You can call some of these commands from the Unix SOP

On your own try:

 gconvert

 gdxf

 gwavefront

What Will the Python Script Do?

Take any geometry and save out its point positions to a spreadsheet so the point
positions can be analyzed by another program

We will write a Python Shell command to take the geometry from the node above the
Unix SOP and write out a CSV file

Telling the Shell We Are Running a Python Script

#!/usr/bin/env python

If you have several versions of Python installed, /usr/bin/env will ensure the
interpreter used is the first one on your environment's $PATH. The alternative
would be to hardcode something line #!/usr/bin/python or the like -- that's OK
but less flexible.

In Unix, an executable file that's meant to be interpreted must indicate what
interpreter to use by having a #! at the start of the first line, followed by the
interpreter (and any flags it may need); otherwise, I believe the default is /bin/sh.

Just to add: this applies when you run it in Unix by making it executable (chmod
+x myscript.py) and then running it directly: ./myscript.py, rather than just
python myscript.py.

!

Comments from
StackOverflow.com

http://StackOverflow.com

 Importing Libraries

import os, sys, json

import csv

OS - The OS module in Python provides a way of using operating system dependent functionality.

The functions that the OS module provides allows you to interface with the underlying operating
system that Python is running on – be that Windows, Mac or Linux.

!

!

Comments from

www.pythonforbeginners.com

http://www.pythonforbeginners.com

OS Functions

SYS

sys - This module provides a number of functions and variables that can be used to manipulate
different parts of the Python runtime environment.

!

JSON

JSON - JavaScript Object Notation is a lightweight data interchange format based on a subset of
JavaScript syntax (ECMA-262 3rd edition).

More importantly when you save a geo file in Houdini it is using the JSON format

JSON
[

 "fileversion","13.0.405",

 "pointcount",8,

 "vertexcount",24,

 "primitivecount",6,

 "info",{

 "software":"Houdini 13.0.405",

 "hostname":"Oriel.local",

 "artist":"ari",

 "timetocook":2.3e-05,

 "date":"2014-05-06 08:08:35",

 "time":0,

 "bounds":[-0.5,0.5,-0.5,0.5,-0.5,0.5],

 "primcount_summary":" 6 Polygons\n",

 "attribute_summary":" 1 point attributes:\tP\n"

 },

 "topology",[

 "pointref",[

 "indices",
[1,5,4,0,2,6,5,1,3,7,6,2,0,4,7,3,2,1,0,3,5,6,7,4]

]

],

 "attributes",[

 "vertexattributes",[

 ,],

 "pointattributes",[

 [

 [

 "scope","public",

 "type","numeric",

 "name","P",

 "options",{

 "type":{

 "type":"string",

 "value":"hpoint
"

 }

 }

],

 [

 "size",4,

 "storage","fpreal32",

 "defaults",[

 "size",4,

 "storage","fpreal64",

 "values",[0,0,0,1]

],

 "values",[

 "size",4,

 "storage","fpreal32",

 "tuples",
[[-0.5,-0.5,-0.5,1],[0.5,-0.5,-0.5,1],[0.5,-0.5,0.5,1],[-0.5,-0.5,0.5,1],
[-0.5,0.5,-0.5,1],[0.5,0.5,-0.5,1],[0.5,0.5,0.5,1],[-0.5,0.5,0.5,1]

Defining Point
Attributes

P Attribute
Defined

Point Positions

We will start by
searching for this
key word

CSV

CSV - Comma Separated Values.

The so-called CSV (Comma Separated Values) format is the most common import and export format
for spreadsheets and databases. There is no “CSV standard”, so the format is operationally defined by
the many applications which read and write it. The lack of a standard means that subtle differences
often exist in the data produced and consumed by different applications. These differences can make it
annoying to process CSV files from multiple sources. Still, while the delimiters and quoting characters
vary, the overall format is similar enough that it is possible to write a single module which can efficiently
manipulate such data, hiding the details of reading and writing the data from the programmer.

The csv module implements classes to read and write tabular data in CSV format. It allows
programmers to say, “write this data in the format preferred by Excel,” or “read data from this file
which was generated by Excel,” without knowing the precise details of the CSV format used by Excel.
Programmers can also describe the CSV formats understood by other applications or define their own
special-purpose CSV formats.

Code So Far…

#!/usr/bin/env python

import os, sys, json

import csv

Main Function

def main():

!

 # Read the incoming geometry

 j = json.load(sys.stdin)

 # Process the input geometry

 process(j)

!

 # Save the geometry out so the Unix SOP can read it back. We could, of

 # course, save different geometry if we wanted.

 json.dump(j, sys.stdout)

!

if __name__ == "__main__":

 main()

!

Process Function
def process(j):

 '''

 Process the JSON by looking for the appropriate items in the JSON arrays

 First find the "attributes" item, then in that array, we find the

 "pointattributes". We iterate over the attributes, looking for "P". When

 we find that, we save out the values to the spreadsheet.

 '''

 # Find the "attributes" item

 attributes = findItem(j, "attributes")

 # Find the point attributes in the "attributes" block

 pointattributes = findItem(attributes, "pointattributes")

 for a in pointattributes:

 name = findItem(a[0], "name")

 if name == "P":

 values = findItem(a[1], "values")

 tuples = findItem(values, "tuples")

 saveP(tuples)

findItem Function

def findItem(list, key):

 '''

 The geometry format stores items in a list of key/value pairs. This

 function finds an item in the list and returns the value (or None if

 not found).

 '''

 for i in xrange(0, len(list), 2):

 if list[i] == key:

 return list[i+1]

 return None

saveP Function
def saveP(values):

 ''' Save the point positions to a file. The file can be specified as the

 first argument to the script. '''

 ofile = hou.expandString('$HIP/thePoint_P.csv')

!

 if len(sys.argv) > 1:

 ofile = sys.argv[1]

 ''' Use the csv module to save the positions to a spreadsheet '''

 fp = csv.writer(open(ofile, 'w'))

 for p in values:

 fp.writerow(p)

Inline HScript & Python Scripts

Script SOP

Script SOP
Script SOP Does Not Modify Geometry

Script in HScript or Python

$HFS/Houdini/Scripts

Example Scripts can be found at $HFS/Houdini/Scripts

Script Ends in - .cmd

Step 01 - Script Basics

While you can call Unix commands by using the unix
command (e.g., unix mkdir foo) it is better to use the
Houdini equivalent so it will work on all OS platforms

 umkdir foo

You can force the script to cook at each frame by selecting
the “Make Time Dependent” Toggle

 umkdir $HIP/TestScriptDir_$F4

Create Multiple
Scripts

Choose either
HScript or Python

Cook at each
Frame

Geometry passes
through Script
node without
being altered

Step 02 - Reading From File

Create a Text document and save it in $HIP/scripts/SOP

Name it - createFolder.cmd

In the text document type the following script:

umkdir $HIP/TestScriptDir_$F4

message "I have written a folder TestScriptDir_" `padzero(4,$F4)`

In the Script SOP type:

$HIP/scripts/sop/createFolder.cmd

Make sure it is set
to HScript

Step 03 - Placing the Script in the Extras Tab

Open the Type Properties for the Script SOP

In the Extra FilesTab load

$HIP/scripts/sop/createFolder.cmd

Once loaded. Click on “Add File”

You will see the script in the right side of the panel

!

Click on this and
navigate to the file

Once the file is
loaded. Add it.

Once “Add File” is clicked
you will see the script

Step 03 - Placing the Script in the Extras Tab
(cont.)

In the Script SOP type:

opdef:/Sop/script?createFolder.cmd

Step 03b - Adding the Frame Number

Adding the Frame Number and File Name

Go to the Script Tab

 Event Handler - Custom Script

 Section Name - CreateFolder

 Language - HScript

Click - Add Empty Section

Type the Following Code

set theFolder = 'foo'"_"`padzero(4,$F4)`

message $theFolder

umkdir $HIP/${theFolder}

message "I have written a folder" $HIP/${theFolder}

Step 04 - Creating an OTL with Button Script
Start a new .hip file and save it into the same Project folder as the last example

Name - CreateButtonProjectFolder.hip

Drop down a Geometry SOP

 Name - Create_Folder

Dive Inside

 Delete the File SOP

 Drop down a Null SOP

Go back to the Object Level

 Select Create_Folder and Make it into a Subnet

 Now convert it into a Digital Asset

 Name - CreateFolder

 Label - Create Folder

 Location - $HIP/otls

 OTL Name - create_folder.otl

Step 04 - Creating an OTL with Button Script (cont.)

Got to the Parameters Tab

Create a Button Parameter

 Name - create_folder

 Label - Create Folder

Create a String Parameter

 Name - file_name

 Label - File Name

!

Step 04 - Creating an OTL with Button Script (cont.)

Go to the Script Tab

 Event Handler - Custom Script

 Section Name - CreateFolder01

 Language - HScript

Click - Add Empty Section

Type the Following Code

set theFolder = ‘foo’

message $theFolder

umkdir $HIP/${theFolder}

message "I have written a folder" $HIP/${theFolder}

Step 04 - Creating an OTL with Button Script (cont.)

Go back to the Parameters Tab

In the callback script section type:

opdef:/Object/ari_createfolder?CreateFolder `chs(“fileName")`

Click Apply

By clicking the “Create Folder” Button you the callback script will be invoked

The callback script calls the HScript we just created

The last part of the command `chs(“fileName”)` will send the string parameter
“filename” to the script as arg1

Callback Script

Step 04 - Creating an OTL with Button Script (cont.)

Now go back to the Scripts tab and modify the Script to take
advantage of arg1

!

!

set theFolder = $arg1"_"`padzero(4,$F4)`

message $theFolder

umkdir $HIP/${theFolder}

message "I have written a folder" $HIP/${theFolder}

Callback Script

Inline Tools

End Part 03

Digital Assets

Part 04

Or… Making a little Mid Level VOPs to help the artist

Creating a VOP Operator

Why Create a VOP Operator?

There are many times you are repeating the same steps
in a VOP Network.

A few months pass before you need the same network
and by then you forgot how to do it

Artists coming from other packages might not have the
technical acumen to create full network

Goals

Create a VOP Operator for a SHOP Context that does Noise Shaping

The new operator will start with the code from the AANoise OP and add:

 Folding

 Color mixing based on noise

 Scalar multiplying the noise based on a spline ramp

 Output color and noise for displacement

The Original Network

We want to collapse Patterns, Shaping, and
Create Color boxes into one VOP
We want to collapse Patterns, Shaping, and
Create Color boxes into one VOP
We want to collapse Patterns, Shaping, and
Create Color boxes into one VOP

Step 01 - Duplicating the OTL

Drop down an anti-alias noise VOP

Right click on the VOP and select Operator Type Manager

A New Dialog Box “Operator Type Manager” should pop up
with the VOP/aanoise highlighted

Operator Type
Manager

Step 01 - Operator Type Manager to Duplicate Noise

Right Click on the highlighted operator and select “Duplicate”

In the dialog that appears create a new name and label

Save to your project folder/ otl folder

Deselect - In asset sections

Click “Accept” Duplicate

Step 01 - Seeing the New Operator

Click the Tab Key and under Digital Assets

Select “Anti-Alias Noise With Fold Color”

Original Operator
New Operator

Step 02 - Add Folding to the New Operator

In the Original Network we had a switch and a ABS operator after the anti-aliased noise.

This allowed the artist to choose between shape folding or no shape folding

We will now implement this in our new operator

Open the Type Properties for the new operator

Examine the VEX Code for Noise

In the Type Library select the Code Tab

Notice that there two sections

 Outer Code - is used to import libraries

 Inner Code - is where you write your logic

Notice that the code to execute a noise function is
already there

Why Are There So Many Noise Functions?

Signatures - Just like you are used to wiring certain
VOPs up to different datatypes (e.g., float, vector) and
seeing the color tab for the node change depending on
the input data type vop_fbmNoise has many signatures
that it can calculate

Where can I find the function in documentation?

You Can’t!

If you launched Houdini from a shell you can easily
navigate to the includes

cd $HH/vex/include

To see voplib.h

cat voplib.h

Step 02 - Adding Folding
Go to the parameters tab and add a toggle

 Name - fold

 Label - Fold

Go to the Code Tab - in the Inner Code Append

 if ($fold == 1) {

 $noise = abs($noise);

 }

Notice fold is typed with “$” prepended

When calling a parameter you need to prepend with $

The Input/Output Tab

I want to be able to wire in the Fold option

Currently my VOP Operator look like the original
aanoise VOP

We want to add a input connection for “fold”

In the Type Library select the Input/Output Tab

Looks like the original

The Input/Output Tab

I want to be able to wire in the Fold option

Currently my VOP Operator look like the original aanoise VOP

We want to add a input connection for “fold”

In the Type Library select the Input/Output Tab

The Top section corresponds to the input tabs of the VOP

The Bottom Section corresponds to the output tabs of the VOP

Input
Output

Adding the Input for the Fold Toggle

Click on New Input and select int

In the Name column replace input1 with fold

In the Label Column replace Input 1 with Fold

Click Apply

Replace these fields

The Results

New Fold tab color
coded bue for int

Updated Field Names

A Quick Test

Rewire the network to use the new noise operator

Bypass the switch and abs operators

Bypass these 3 nodesBypass these 3 nodesBypass these 3 nodes

Use the new operator
instead

no fold fold

Step 03 - Adding Color to the Operator

We will want to create to color inputs into the operator
and do a color mix that is controlled by the noise we
just generated

Step 03 - Adding Color

Open the Type Library once again

In the parameters add two color parameters

 name: primary_color, secondary_color

 label: Primary Color, Secondary Color

Make the Color defaults:

 primary_color: (1,1,1)

 secondary_color (0,0,0)

Step 03 - Adding Color (cont.)

Go to the Input/Output Tab

Add the two color inputs - primary_color, secondary_color

Add an output - clr

Color Inputs

Color Output

Color Output

Color Inputs

Step 03 - Adding the Code

vector mixColor = vop_colormix($primary_color, $secondary_color, $noise,3);

$clr = mixColor;

New code

What is vop_colormixvector
vop_colormix(vector c1, c2; float bias; int adjust)
{
 vector clr;
 if (adjust == 3)
 clr = cspline(bias, c1, c1, c2, c2);
 else if (adjust == 2)
 clr = lerp(c1, c2, float(smooth(0, 1, bias)));
 else if (adjust == 1)
 clr = lerp(c1, c2, float(clamp(bias, 0, 1)));
 else
 clr = lerp(c1, c2, bias);
 return clr;
}
!
This code can be found in voplib.h
As you can see this code is a more intelligent version of a lerp()
It has the additional characteristic that it is compatible with RSL

Assignment - Wire In Smoothing

Currently in the vop_colormix code smoothing is hard
coded to “3”

It would be better for the artist to be able to choose
which smoothing function the vop_colormix should use

Add a integer parameter and make it a menu. One item
for each of the four options in vop_colormix

Make the parameter a input into the node

Change the vop_colormix to read the parameter

 Wire In Smoothing

New integer park -
smoothing

Menu items for
smoothing

Declaring the input

Updated Code

New Input

Riddle Me This…

Why in a SOP otl do you have to “Save Operator Type” and “Match Current
Definition” while In a VOP/VEX otl you do not save but just Apply/Accept?

All assets other then VOP types are simple Node networks. They do not get compiled
at any time unless they themselves contain VOP Networks

With VOP/VEX, when you hit the Apply/Accept button it saves the code but then
compiles the the asset into assembly by the LLVM compiler

The gotcha - Because VEX is compiled all parameters must be declared variables in
the function arguments.

Making a VOP Operator from Scratch

Here is a simple network that changes the normals for displacement direction.
Basically this logic is used for shearing and scaling bumps in the geometry

Let us make a custom VOP Operator called Displace_Direction that contains
this logic

Creating the “Empty Asset”
Go to the Menu Bar at the top of Houdini. Click on:

 File—> New Operator Type…

Name: displacement_direction

Label: Displacement Direction

What is Operator Style?

 In our case we have two choices:

 VEX Type & VEX Builder Type

VEX Type - Use this option if you want to build an operator for a
specific context/sub context. (i.e., surface shaders, displacement
shaders)

VEX Builder Type - Generic VOP, a VOP that will bemused in multiple
contexts

Save to Library - Save to your project folder’s otls folder

What Inputs Do We Need?

The inputs we will need for the custom operator are:

 N - Normal (vector)

 normal_amount (float) - A scalar multiplier for the normal

 displacement_direction (vector) - which direction do you want to “pull the normals”

 direction_amount - how hard do you want to pull in the displacement direction

Declaring the Inputs

In the Parameters Tab create the parameters defined
on the previous slide

Declaring the Inputs (cont.)

In the Input/Output Tab click on “Create/Update Inputs From Parameters”

This will bring in to the input/output tab all the parameters you just created

Click here

Adding the Output

In the Output Section add a vector

 Name: new_normal

 Label: New Normal

Click apply and you will be able to drop down your new operator

Adding the Code

In the Code Tab type the following line of code:	

$new_normal = normalize(($N * $normal_amount) + ($dd *$direction_amount));

More on the Input/Output Tab

Force Code Generation - When a VOP operator appears in a VOP network,
the VEX Builder will only include the code generated by that operator if it determines that its
code is required. Generally, this is true for subnet type VOPs, the Output VOP, and any VOP
that is connected, directly or indirectly, to the input of a VOP that has required code. However,
you can force the VEX Builder to generate the code for your VOP by turning on the Force Code
Generation toggle.

!

Procedural Shader - Indicates whether the VOP is implemented by a DSO or
DLL file instead of code generated by the VEX Builder.

!

Visible Column - This column is present when editing a VOP Asset. It is the default
value for whether inputs are visible or not, which is customized on a per-node basis by clicking
on the icons next to the corresponding VOP parameters.

Force Code
Generation

Procedural Shader

Adding Signatures

A signature provides an alternate set of data types for
each input and output. By default, a new VOP operator
has only one signature. To create a new signature,
press the New Signature button. The new signature will
be created with a default name and description, and
with the same data types for all inputs and outputs as
the previous signature.

Adding Signatures

Before clicking add signature
there is a default signature

Adding Signatures - A Quick Example

Let us add a noise offset to our Displacement Direction

We will want the artist to be able to wire in 1D or 3D Noise therefore we can have
either two separate inputs, with two separate name and two equations or we can
use signatures

In the Parameters Tab add a Vector

 Name - offset_noise

 Label - Offset Noise

In the Input/Output tab create a vector

 Name - offset_noise

 Label - Offset Noise

Adding Signatures - A Quick Example (cont.)

!

Click on Add Signature

 A new column appears “S1” - Signature 1

 Change the value to a float

Add the additional line of code

 $new_normal = normalize(($N * $normal_amount) + ($dd * $direction_amount));

 $new_normal += $offset_noise;

Click Apply/Accept

New Signature
Column

Testing the Code

Wire in an antialias noise VOP to the offset_noise input

Change Noise type to Simplex

Test 3D in 1D out - See the color of the flag change

Test 3D in 3D out - See the color of the flag change

See the results of the test geometry change

1D Noise 3D Noise

Creating a Desktop Tool in Python

Creating a New Shelf

Click on the “+” button and select the New Shelf

In the Pop Up Dialog Box

 Name - utils

 Label - Utils

Click Accept

!

Create a New Shelf Tool

Right Click on the Blank Shelf

In the Drop Down Menu Select “New Menu”

 Name - utils

 Label - Utils

Click Accept

!

Blank Section

Right Click and
Select New Tool

Create a New Shelf Tool (cont.)

In the Pop Up Dialog

 Name - project_folders

 Label - Project Folders

!

The Code
import hou, os

import re

import objecttoolutils

!

folder = hou.ui.selectFile(title = "Create Project", file_type =
hou.fileType.Hip, chooser_mode = hou.fileChooserMode.Write)

print os.path.basename(folder)

theFile = str(folder)

oFile = hou.expandString(theFile)

hou.hipFile.save(file_name = oFile)

path = os.path.dirname(oFile)

print path

!

projectFolders = ("geo", "pic", "icons", "refs", "documents",
"chops", "lsystems", "img", "audio", "desktop", "gallery",
"presets", "scripts", "toolbar", "otls", "videos", "utilities",
"scrap", "shell")

scriptFolderItems = ("chop", "cop2", "obj", "out", "sop")

imageFolderItems = ("hdr", "ldr", "panoramas")

!

!

for pf in projectFolders:

 fullFolderName = path + "/" + pf

 os.makedirs(fullFolderName)

scriptFolderPath = path + "/scripts"

for sf in scriptFolderItems:

 fullFolderName = scriptFolderPath + "/" + sf

 os.makedirs(fullFolderName)

!

imageFolderPath = path + "/img"

for imf in imageFolderItems:

 fullFolderName = imageFolderPath + "/" + imf

 os.makedirs(fullFolderName)

!

theBox = hou.node('/obj').createNode('geo')

theBox.setName("My_Model")

theBox.node('file1').destroy()

b = theBox.createNode('box')

Or… A redo of the first attempt to explain

Help Cards Part 2

Help Card Template (Part 01)

Place Icon

Asset Name

Context

One Line
Description

Full
Description

Unordered
List

Ordered List

Tipe Section

Help Card Template (Part 01)

#type: node

#context: obj

#largeicon: opdef:Object/aridanesh_testdoc?testDocIcon.png

#tags: points, attrs, core, tech

= PlaceAssetNameHere =

"""Place one line description here that will be in italics."""

Place full description here. Local variables like `$BBX`, `$BBY`, and `$BBZ` should be in back ticks so they have a gray box around them.

== Tips ==

 - This tip section goes here. To make an unordered list use the `-` key

!
 - if you want to link to another page the syntax is as follows [expressions|/expressions]. Another example

 [point|Exp:point]

!
 - To set text as bold use two underscores before and after the text. This is __nice and bold__

 - To create an unordered sub list tab in and use the `-` key

 - The icon you create should be 42x42 pixels. Note png, svg, pic, and jpg will work. Png works nicely since it has a built in transperancy.

!
 - You can set a link to the icon on the hard drive but embedding is more elegant. Look at the `Extra Files` tab to see how to embed

!
 # Ordered lists start with a pound `#`

 # Her is line 2

 # Sub lists need to be tabbed in bit stil start with a `#`

 # Another sublist

 # Back to the main list

Help Card Template (Part 02)

Stylized
Notes

Parameter
Section

More
Parameters

Help Card Template (Part 02)
@parameters

 Parameter 1:

 Place description here

 When there are two inputs

 Parameter 2:

 Place description here

 Which attribute

 Parameter 2B:

 Notice tabbing controls sub levels.

 NOTE:

 This is how you make a note.

 NOTE:

 When creating parameters note that the number of tabs determines the sub levels.

 == Another Tab of Parameters ==

 Position:

 # To make a comment use the # sign at the begining of the line

 XYZ position.

 Weight:

 #channels: /weight

!
 Spline weight of the point.

 Color:

 #channels: /diffr /diffg /diffb

 Diffuse color (RGB).

Help Card Template (Part 03)
Declaring Local
Variables

Help Card Template (Part 03)
@locals

 PT:

 Point number.

 NPT:

 Total number of points.

 CEX, CEY, CEZ:

 Centroid of the input geometry.

 TX, TY, TZ:

 Point position.

!

 PSCALE:

 Particle Scale

 PT<<n>>, NPT<<n>>:

 Append <<n>> for the second source.

!

@related

 - [Node:sop/vertex]

 - [Node:sop/primitive]

 - [Node:sop/xform]

Digital Assets

End Part 04

