How to set surface tension in MPM? What's stiffness?

   1196   5   1
User Avatar
Member
373 posts
Joined: 6月 2023
Offline
In FLIP we can set surface tension for fluid.

In MPM, I can't find where the surface tension is. The "viscous" behavior's parameters look like this:



It's a bit confusing... where is surface tension? And why is stiffness a thing for fluid? The document says stiffness is Young's Modulus, but fluid should has zero Young's Modulus, shouldn't it? Why the default value is more than 100000?

Wikipedia [en.wikipedia.org]:

a very soft material (such as a fluid) would deform without force, and would have zero Young's modulus.
Edited by kodra - 2024年7月12日 21:09:49

Attachments:
Screenshot 2024-07-13 090602.jpg (34.0 KB)

User Avatar
Member
61 posts
Joined: 10月 2021
Online
https://www.sidefx.com/forum/topic/96931/?page=1#post-426235 [www.sidefx.com]

Hopefully there will be detailed info in the upcoming masterclass
www.rehimi.de
User Avatar
スタッフ
93 posts
Joined: 6月 2023
Offline
You are right that fluids like water have no resistance to deformation and only oppose pressure changes. To get this behavior, pick the liquid constitutive model "Behavior" or pick the "Water" material preset on the MPM Source.

You are currently looking at the "Viscous" (viscoelastic) "Behavior" (constitutive model) which can oppose deformation when viscosity is used. This model is defined using two lamé parameters that can be derived from the Young's Modulus and Poisson's Ratio which is what we are doing here to simplify the UI/UX. If viscosity is set to 0, "Stiffness" (Young's Modulus) will behave a lot like the "Incompressibility" (Bulk Modulus) parameter of the liquid "Behavior" (constitutive model).

Long story short, you should be able to start from the "Honey" preset and only change the viscosity without caring too much about the other parameters.
User Avatar
Member
373 posts
Joined: 6月 2023
Offline
AlexandreSV
You are right that fluids like water have no resistance to deformation and only oppose pressure changes. To get this behavior, pick the liquid constitutive model "Behavior" or pick the "Water" material preset on the MPM Source.

You are currently looking at the "Viscous" (viscoelastic) "Behavior" (constitutive model) which can oppose deformation when viscosity is used. This model is defined using two lamé parameters that can be derived from the Young's Modulus and Poisson's Ratio which is what we are doing here to simplify the UI/UX. If viscosity is set to 0, "Stiffness" (Young's Modulus) will behave a lot like the "Incompressibility" (Bulk Modulus) parameter of the liquid "Behavior" (constitutive model).

Long story short, you should be able to start from the "Honey" preset and only change the viscosity without caring too much about the other parameters.

Thank for your answer. I suppose it makes sense... but I still don't know how to control the surface tension. I know honey doesn't have a very high value of surface tension in real life. I just wonder if it's a controllable parameter in MPM.
User Avatar
スタッフ
93 posts
Joined: 6月 2023
Offline
kodra
Thank for your answer. I suppose it makes sense... but I still don't know how to control the surface tension. I know honey doesn't have a very high value of surface tension in real life. I just wonder if it's a controllable parameter in MPM.

Surface tension is currently not implemented in MPM, but it is being looked at.
User Avatar
Member
172 posts
Joined: 5月 2021
Offline
For material surface tension, you could add peridynamic surface layer, but fluid FLIP/APIC and other variants are fluid specific "MPM" solvers since MPM is a generalization of FLIP into a continuum solver. Hopefully adding bonds (vellum constraints) to the MPM solver you can get necessary data to shape anisotropic surfacing on the VDBs (https://faculty.cc.gatech.edu/~turk/my_papers/sph_surfaces.pdf) (https://github.com/dariaq/anisotropic_kernels)



I also saw this PBD-MPM video that is pretty cool and could help too.

Edited by PHENOMDESIGN - 2024年8月30日 22:14:48
PHENOM(enological) DESIGN;
Experimental phenomenology (study of experience) is a category of philosophy evidencing intentional variations of subjective human experiencing where both the independent and dependent variable are phenomenological. Lundh 2020
  • Quick Links