HDK
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SpookyV2.h
Go to the documentation of this file.
1 //-*****************************************************************************
2 //
3 // Copyright (c) 2013-2015,
4 // Sony Pictures Imageworks Inc. and
5 // Industrial Light & Magic, a division of Lucasfilm Entertainment Company Ltd.
6 //
7 // All rights reserved.
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
14 // * Redistributions in binary form must reproduce the above
15 // copyright notice, this list of conditions and the following disclaimer
16 // in the documentation and/or other materials provided with the
17 // distribution.
18 // * Neither the name of Industrial Light & Magic nor the names of
19 // its contributors may be used to endorse or promote products derived
20 // from this software without specific prior written permission.
21 //
22 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 //
34 //-*****************************************************************************
35 
36 //
37 // SpookyHash: a 128-bit noncryptographic hash function
38 // By Bob Jenkins, public domain
39 // Oct 31 2010: alpha, framework + SpookyHash::Mix appears right
40 // Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right
41 // Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas
42 // Feb 2 2012: production, same bits as beta
43 // Feb 5 2012: adjusted definitions of uint* to be more portable
44 // Mar 30 2012: 3 bytes/cycle, not 4. Alpha was 4 but wasn't thorough enough.
45 // August 5 2012: SpookyV2 (different results)
46 //
47 // Up to 3 bytes/cycle for long messages. Reasonably fast for short messages.
48 // All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit.
49 //
50 // This was developed for and tested on 64-bit x86-compatible processors.
51 // It assumes the processor is little-endian. There is a macro
52 // controlling whether unaligned reads are allowed (by default they are).
53 // This should be an equally good hash on big-endian machines, but it will
54 // compute different results on them than on little-endian machines.
55 //
56 // Google's CityHash has similar specs to SpookyHash, and CityHash is faster
57 // on new Intel boxes. MD4 and MD5 also have similar specs, but they are orders
58 // of magnitude slower. CRCs are two or more times slower, but unlike
59 // SpookyHash, they have nice math for combining the CRCs of pieces to form
60 // the CRCs of wholes. There are also cryptographic hashes, but those are even
61 // slower than MD5.
62 //
63 
64 #ifndef Alembic_Util_SpookyV2_h
65 #define Alembic_Util_SpookyV2_h
66 
67 #include <Alembic/Util/Export.h>
69 
70 namespace Alembic {
71 namespace Util {
72 namespace ALEMBIC_VERSION_NS {
73 
75 {
76 public:
77  //
78  // SpookyHash: hash a single message in one call, produce 128-bit output
79  //
80  static void Hash128(
81  const void *message, // message to hash
82  size_t length, // length of message in bytes
83  uint64_t *hash1, // in/out: in seed 1, out hash value 1
84  uint64_t *hash2); // in/out: in seed 2, out hash value 2
85 
86  //
87  // Hash64: hash a single message in one call, return 64-bit output
88  //
89  static uint64_t Hash64(
90  const void *message, // message to hash
91  size_t length, // length of message in bytes
92  uint64_t seed) // seed
93  {
94  uint64_t hash1 = seed;
95  Hash128(message, length, &hash1, &seed);
96  return hash1;
97  }
98 
99  //
100  // Hash32: hash a single message in one call, produce 32-bit output
101  //
102  static uint32_t Hash32(
103  const void *message, // message to hash
104  size_t length, // length of message in bytes
105  uint32_t seed) // seed
106  {
107  uint64_t hash1 = seed, hash2 = seed;
108  Hash128(message, length, &hash1, &hash2);
109  return (uint32_t)hash1;
110  }
111 
112  //
113  // Init: initialize the context of a SpookyHash
114  //
115  void Init(
116  uint64_t seed1, // any 64-bit value will do, including 0
117  uint64_t seed2); // different seeds produce independent hashes
118 
119  //
120  // Update: add a piece of a message to a SpookyHash state
121  //
122  void Update(
123  const void *message, // message fragment
124  size_t length); // length of message fragment in bytes
125 
126 
127  //
128  // Final: compute the hash for the current SpookyHash state
129  //
130  // This does not modify the state; you can keep updating it afterward
131  //
132  // The result is the same as if SpookyHash() had been called with
133  // all the pieces concatenated into one message.
134  //
135  void Final(
136  uint64_t *hash1, // out only: first 64 bits of hash value.
137  uint64_t *hash2); // out only: second 64 bits of hash value.
138 
139  //
140  // left rotate a 64-bit value by k bytes
141  //
142  static inline uint64_t Rot64(uint64_t x, int k)
143  {
144  return (x << k) | (x >> (64 - k));
145  }
146 
147  //
148  // This is used if the input is 96 bytes long or longer.
149  //
150  // The internal state is fully overwritten every 96 bytes.
151  // Every input bit appears to cause at least 128 bits of entropy
152  // before 96 other bytes are combined, when run forward or backward
153  // For every input bit,
154  // Two inputs differing in just that input bit
155  // Where "differ" means xor or subtraction
156  // And the base value is random
157  // When run forward or backwards one Mix
158  // I tried 3 pairs of each; they all differed by at least 212 bits.
159  //
160  static inline void Mix(
161  const uint64_t *data,
162  uint64_t &s0, uint64_t &s1, uint64_t &s2, uint64_t &s3,
163  uint64_t &s4, uint64_t &s5, uint64_t &s6, uint64_t &s7,
164  uint64_t &s8, uint64_t &s9, uint64_t &s10,uint64_t &s11)
165  {
166  s0 += data[0]; s2 ^= s10; s11 ^= s0; s0 = Rot64(s0,11); s11 += s1;
167  s1 += data[1]; s3 ^= s11; s0 ^= s1; s1 = Rot64(s1,32); s0 += s2;
168  s2 += data[2]; s4 ^= s0; s1 ^= s2; s2 = Rot64(s2,43); s1 += s3;
169  s3 += data[3]; s5 ^= s1; s2 ^= s3; s3 = Rot64(s3,31); s2 += s4;
170  s4 += data[4]; s6 ^= s2; s3 ^= s4; s4 = Rot64(s4,17); s3 += s5;
171  s5 += data[5]; s7 ^= s3; s4 ^= s5; s5 = Rot64(s5,28); s4 += s6;
172  s6 += data[6]; s8 ^= s4; s5 ^= s6; s6 = Rot64(s6,39); s5 += s7;
173  s7 += data[7]; s9 ^= s5; s6 ^= s7; s7 = Rot64(s7,57); s6 += s8;
174  s8 += data[8]; s10 ^= s6; s7 ^= s8; s8 = Rot64(s8,55); s7 += s9;
175  s9 += data[9]; s11 ^= s7; s8 ^= s9; s9 = Rot64(s9,54); s8 += s10;
176  s10 += data[10]; s0 ^= s8; s9 ^= s10; s10 = Rot64(s10,22); s9 += s11;
177  s11 += data[11]; s1 ^= s9; s10 ^= s11; s11 = Rot64(s11,46); s10 += s0;
178  }
179 
180  //
181  // Mix all 12 inputs together so that h0, h1 are a hash of them all.
182  //
183  // For two inputs differing in just the input bits
184  // Where "differ" means xor or subtraction
185  // And the base value is random, or a counting value starting at that bit
186  // The final result will have each bit of h0, h1 flip
187  // For every input bit,
188  // with probability 50 +- .3%
189  // For every pair of input bits,
190  // with probability 50 +- 3%
191  //
192  // This does not rely on the last Mix() call having already mixed some.
193  // Two iterations was almost good enough for a 64-bit result, but a
194  // 128-bit result is reported, so End() does three iterations.
195  //
196  static inline void EndPartial(
197  uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
198  uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
199  uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
200  {
201  h11+= h1; h2 ^= h11; h1 = Rot64(h1,44);
202  h0 += h2; h3 ^= h0; h2 = Rot64(h2,15);
203  h1 += h3; h4 ^= h1; h3 = Rot64(h3,34);
204  h2 += h4; h5 ^= h2; h4 = Rot64(h4,21);
205  h3 += h5; h6 ^= h3; h5 = Rot64(h5,38);
206  h4 += h6; h7 ^= h4; h6 = Rot64(h6,33);
207  h5 += h7; h8 ^= h5; h7 = Rot64(h7,10);
208  h6 += h8; h9 ^= h6; h8 = Rot64(h8,13);
209  h7 += h9; h10^= h7; h9 = Rot64(h9,38);
210  h8 += h10; h11^= h8; h10= Rot64(h10,53);
211  h9 += h11; h0 ^= h9; h11= Rot64(h11,42);
212  h10+= h0; h1 ^= h10; h0 = Rot64(h0,54);
213  }
214 
215  static inline void End(
216  const uint64_t *data,
217  uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
218  uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
219  uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
220  {
221  h0 += data[0]; h1 += data[1]; h2 += data[2]; h3 += data[3];
222  h4 += data[4]; h5 += data[5]; h6 += data[6]; h7 += data[7];
223  h8 += data[8]; h9 += data[9]; h10 += data[10]; h11 += data[11];
224  EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
225  EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
226  EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
227  }
228 
229  //
230  // The goal is for each bit of the input to expand into 128 bits of
231  // apparent entropy before it is fully overwritten.
232  // n trials both set and cleared at least m bits of h0 h1 h2 h3
233  // n: 2 m: 29
234  // n: 3 m: 46
235  // n: 4 m: 57
236  // n: 5 m: 107
237  // n: 6 m: 146
238  // n: 7 m: 152
239  // when run forwards or backwards
240  // for all 1-bit and 2-bit diffs
241  // with diffs defined by either xor or subtraction
242  // with a base of all zeros plus a counter, or plus another bit, or random
243  //
244  static inline void ShortMix(
245  uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
246  {
247  h2 = Rot64(h2,50); h2 += h3; h0 ^= h2;
248  h3 = Rot64(h3,52); h3 += h0; h1 ^= h3;
249  h0 = Rot64(h0,30); h0 += h1; h2 ^= h0;
250  h1 = Rot64(h1,41); h1 += h2; h3 ^= h1;
251  h2 = Rot64(h2,54); h2 += h3; h0 ^= h2;
252  h3 = Rot64(h3,48); h3 += h0; h1 ^= h3;
253  h0 = Rot64(h0,38); h0 += h1; h2 ^= h0;
254  h1 = Rot64(h1,37); h1 += h2; h3 ^= h1;
255  h2 = Rot64(h2,62); h2 += h3; h0 ^= h2;
256  h3 = Rot64(h3,34); h3 += h0; h1 ^= h3;
257  h0 = Rot64(h0,5); h0 += h1; h2 ^= h0;
258  h1 = Rot64(h1,36); h1 += h2; h3 ^= h1;
259  }
260 
261  //
262  // Mix all 4 inputs together so that h0, h1 are a hash of them all.
263  //
264  // For two inputs differing in just the input bits
265  // Where "differ" means xor or subtraction
266  // And the base value is random, or a counting value starting at that bit
267  // The final result will have each bit of h0, h1 flip
268  // For every input bit,
269  // with probability 50 +- .3% (it is probably better than that)
270  // For every pair of input bits,
271  // with probability 50 +- .75% (the worst case is approximately that)
272  //
273  static inline void ShortEnd(
274  uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
275  {
276  h3 ^= h2; h2 = Rot64(h2,15); h3 += h2;
277  h0 ^= h3; h3 = Rot64(h3,52); h0 += h3;
278  h1 ^= h0; h0 = Rot64(h0,26); h1 += h0;
279  h2 ^= h1; h1 = Rot64(h1,51); h2 += h1;
280  h3 ^= h2; h2 = Rot64(h2,28); h3 += h2;
281  h0 ^= h3; h3 = Rot64(h3,9); h0 += h3;
282  h1 ^= h0; h0 = Rot64(h0,47); h1 += h0;
283  h2 ^= h1; h1 = Rot64(h1,54); h2 += h1;
284  h3 ^= h2; h2 = Rot64(h2,32); h3 += h2;
285  h0 ^= h3; h3 = Rot64(h3,25); h0 += h3;
286  h1 ^= h0; h0 = Rot64(h0,63); h1 += h0;
287  }
288 
289 private:
290 
291  //
292  // Short is used for messages under 192 bytes in length
293  // Short has a low startup cost, the normal mode is good for long
294  // keys, the cost crossover is at about 192 bytes. The two modes were
295  // held to the same quality bar.
296  //
297  static void Short(
298  const void *message, // message (array of bytes, not necessarily aligned)
299  size_t length, // length of message (in bytes)
300  uint64_t *hash1, // in/out: in the seed, out the hash value
301  uint64_t *hash2); // in/out: in the seed, out the hash value
302 
303  // number of uint64's in internal state
304  static const size_t sc_numVars = 12;
305 
306  // size of the internal state
307  static const size_t sc_blockSize = sc_numVars*8;
308 
309  // size of buffer of unhashed data, in bytes
310  static const size_t sc_bufSize = 2*sc_blockSize;
311 
312  //
313  // sc_const: a constant which:
314  // * is not zero
315  // * is odd
316  // * is a not-very-regular mix of 1's and 0's
317  // * does not need any other special mathematical properties
318  //
319  static const uint64_t sc_const = 0xdeadbeefdeadbeefLL;
320 
321  uint64_t m_data[2*sc_numVars]; // unhashed data, for partial messages
322  uint64_t m_state[sc_numVars]; // internal state of the hash
323  size_t m_length; // total length of the input so far
324  uint8_t m_remainder; // length of unhashed data stashed in m_data
325 };
326 
327 
328 } // End namespace ALEMBIC_VERSION_NS
329 
330 using namespace ALEMBIC_VERSION_NS;
331 
332 } // End namespace Util
333 } // End namespace Alembic
334 
335 #endif
336 
static void EndPartial(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3, uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7, uint64_t &h8, uint64_t &h9, uint64_t &h10, uint64_t &h11)
Definition: SpookyV2.h:196
GLuint GLsizei const GLchar * message
Definition: glcorearb.h:2543
static uint32_t Hash32(const void *message, size_t length, uint32_t seed)
Definition: SpookyV2.h:102
#define ALEMBIC_EXPORT
Definition: Export.h:51
GLuint GLsizei GLsizei * length
Definition: glcorearb.h:795
static uint64_t Rot64(uint64_t x, int k)
Definition: SpookyV2.h:142
static void ShortMix(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
Definition: SpookyV2.h:244
static uint64_t Hash64(const void *message, size_t length, uint64_t seed)
Definition: SpookyV2.h:89
GLint GLenum GLint x
Definition: glcorearb.h:409
static void Mix(const uint64_t *data, uint64_t &s0, uint64_t &s1, uint64_t &s2, uint64_t &s3, uint64_t &s4, uint64_t &s5, uint64_t &s6, uint64_t &s7, uint64_t &s8, uint64_t &s9, uint64_t &s10, uint64_t &s11)
Definition: SpookyV2.h:160
static void ShortEnd(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
Definition: SpookyV2.h:273
static void End(const uint64_t *data, uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3, uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7, uint64_t &h8, uint64_t &h9, uint64_t &h10, uint64_t &h11)
Definition: SpookyV2.h:215
STATIC_INLINE uint128_t Hash128(const char *s, size_t len)
Definition: farmhash.h:2061
Definition: format.h:895
#define ALEMBIC_VERSION_NS
Definition: Foundation.h:88