HDK
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Tree.h
Go to the documentation of this file.
1 // Copyright Contributors to the OpenVDB Project
2 // SPDX-License-Identifier: MPL-2.0
3 
4 /// @file tree/Tree.h
5 
6 #ifndef OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED
7 #define OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED
8 
9 #include <openvdb/Types.h>
10 #include <openvdb/Metadata.h>
11 #include <openvdb/math/Math.h>
12 #include <openvdb/math/BBox.h>
13 #include <openvdb/tools/Count.h> // tools::countActiveVoxels(), tools::memUsage(), tools::minMax()
14 #include <openvdb/util/Formats.h>
15 #include <openvdb/util/logging.h>
16 #include <openvdb/Platform.h>
17 #include "RootNode.h"
18 #include "InternalNode.h"
19 #include "LeafNode.h"
20 #include "TreeIterator.h"
21 #include "ValueAccessor.h"
22 #include <tbb/concurrent_hash_map.h>
23 #include <cstdint>
24 #include <iostream>
25 #include <mutex>
26 #include <sstream>
27 #include <vector>
28 
29 
30 namespace openvdb {
32 namespace OPENVDB_VERSION_NAME {
33 namespace tree {
34 
35 /// @brief Base class for typed trees
37 {
38 public:
41 
42  TreeBase() = default;
43  TreeBase(const TreeBase&) = default;
44  TreeBase& operator=(const TreeBase&) = delete; // disallow assignment
45  virtual ~TreeBase() = default;
46 
47  /// Return the name of this tree's type.
48  virtual const Name& type() const = 0;
49 
50  /// Return the name of the type of a voxel's value (e.g., "float" or "vec3d").
51  virtual Name valueType() const = 0;
52 
53  /// Return @c true if this tree is of the same type as the template parameter.
54  template<typename TreeType>
55  bool isType() const { return (this->type() == TreeType::treeType()); }
56 
57  /// Return a pointer to a deep copy of this tree
58  virtual TreeBase::Ptr copy() const = 0;
59 
60  //
61  // Tree methods
62  //
63  /// @brief Return this tree's background value wrapped as metadata.
64  /// @note Query the metadata object for the value's type.
65  virtual Metadata::Ptr getBackgroundValue() const { return Metadata::Ptr(); }
66 
67  /// @brief Return in @a bbox the axis-aligned bounding box of all
68  /// active tiles and leaf nodes with active values.
69  /// @details This is faster than calling evalActiveVoxelBoundingBox,
70  /// which visits the individual active voxels, and hence
71  /// evalLeafBoundingBox produces a less tight, i.e. approximate, bbox.
72  /// @return @c false if the bounding box is empty (in which case
73  /// the bbox is set to its default value).
74  virtual bool evalLeafBoundingBox(CoordBBox& bbox) const = 0;
75 
76  /// @brief Return in @a dim the dimensions of the axis-aligned bounding box
77  /// of all leaf nodes.
78  /// @return @c false if the bounding box is empty.
79  virtual bool evalLeafDim(Coord& dim) const = 0;
80 
81  /// @brief Return in @a bbox the axis-aligned bounding box of all
82  /// active voxels and tiles.
83  /// @details This method produces a more accurate, i.e. tighter,
84  /// bounding box than evalLeafBoundingBox which is approximate but
85  /// faster.
86  /// @return @c false if the bounding box is empty (in which case
87  /// the bbox is set to its default value).
88  virtual bool evalActiveVoxelBoundingBox(CoordBBox& bbox) const = 0;
89 
90  /// @brief Return in @a dim the dimensions of the axis-aligned bounding box of all
91  /// active voxels. This is a tighter bounding box than the leaf node bounding box.
92  /// @return @c false if the bounding box is empty.
93  virtual bool evalActiveVoxelDim(Coord& dim) const = 0;
94 
95  virtual void getIndexRange(CoordBBox& bbox) const = 0;
96 
97  /// @brief Replace with background tiles any nodes whose voxel buffers
98  /// have not yet been allocated.
99  /// @details Typically, unallocated nodes are leaf nodes whose voxel buffers
100  /// are not yet resident in memory because delayed loading is in effect.
101  /// @sa readNonresidentBuffers, io::File::open
102  virtual void clipUnallocatedNodes() = 0;
103  /// Return the total number of unallocated leaf nodes residing in this tree.
104  virtual Index32 unallocatedLeafCount() const = 0;
105 
106 
107  //
108  // Statistics
109  //
110  /// @brief Return the depth of this tree.
111  ///
112  /// A tree with only a root node and leaf nodes has depth 2, for example.
113  virtual Index treeDepth() const = 0;
114  /// Return the number of leaf nodes.
115  virtual Index32 leafCount() const = 0;
116  /// Return a vector with node counts. The number of nodes of type NodeType
117  /// is given as element NodeType::LEVEL in the return vector. Thus, the size
118  /// of this vector corresponds to the height (or depth) of this tree.
119  virtual std::vector<Index32> nodeCount() const = 0;
120  /// Return the number of non-leaf nodes.
121  virtual Index32 nonLeafCount() const = 0;
122  /// Return the number of active voxels stored in leaf nodes.
123  virtual Index64 activeLeafVoxelCount() const = 0;
124  /// Return the number of inactive voxels stored in leaf nodes.
125  virtual Index64 inactiveLeafVoxelCount() const = 0;
126  /// Return the total number of active voxels.
127  virtual Index64 activeVoxelCount() const = 0;
128  /// Return the number of inactive voxels within the bounding box of all active voxels.
129  virtual Index64 inactiveVoxelCount() const = 0;
130  /// Return the total number of active tiles.
131  virtual Index64 activeTileCount() const = 0;
132 
133  /// Return the total amount of memory in bytes occupied by this tree.
134  virtual Index64 memUsage() const { return 0; }
135 
136 
137  //
138  // I/O methods
139  //
140  /// @brief Read the tree topology from a stream.
141  ///
142  /// This will read the tree structure and tile values, but not voxel data.
143  virtual void readTopology(std::istream&, bool saveFloatAsHalf = false);
144  /// @brief Write the tree topology to a stream.
145  ///
146  /// This will write the tree structure and tile values, but not voxel data.
147  virtual void writeTopology(std::ostream&, bool saveFloatAsHalf = false) const;
148 
149  /// Read all data buffers for this tree.
150  virtual void readBuffers(std::istream&, bool saveFloatAsHalf = false) = 0;
151  /// Read all of this tree's data buffers that intersect the given bounding box.
152  virtual void readBuffers(std::istream&, const CoordBBox&, bool saveFloatAsHalf = false) = 0;
153  /// @brief Read all of this tree's data buffers that are not yet resident in memory
154  /// (because delayed loading is in effect).
155  /// @details If this tree was read from a memory-mapped file, this operation
156  /// disconnects the tree from the file.
157  /// @sa clipUnallocatedNodes, io::File::open, io::MappedFile
158  virtual void readNonresidentBuffers() const = 0;
159  /// Write out all the data buffers for this tree.
160  virtual void writeBuffers(std::ostream&, bool saveFloatAsHalf = false) const = 0;
161 
162  /// @brief Print statistics, memory usage and other information about this tree.
163  /// @param os a stream to which to write textual information
164  /// @param verboseLevel 1: print tree configuration only;
165  /// 2: include node and voxel statistics;
166  /// 3: include memory usage;
167  /// 4: include minimum and maximum voxel values
168  /// @warning @a verboseLevel 4 forces loading of any unallocated nodes.
169  virtual void print(std::ostream& os = std::cout, int verboseLevel = 1) const;
170 };
171 
172 
173 ////////////////////////////////////////
174 
175 
176 template<typename _RootNodeType>
177 class Tree: public TreeBase
178 {
179 public:
182 
183  using RootNodeType = _RootNodeType;
186  using LeafNodeType = typename RootNodeType::LeafNodeType;
187 
188  static const Index DEPTH = RootNodeType::LEVEL + 1;
189 
190  /// @brief ValueConverter<T>::Type is the type of a tree having the same
191  /// hierarchy as this tree but a different value type, T.
192  ///
193  /// For example, FloatTree::ValueConverter<double>::Type is equivalent to DoubleTree.
194  /// @note If the source tree type is a template argument, it might be necessary
195  /// to write "typename SourceTree::template ValueConverter<T>::Type".
196  template<typename OtherValueType>
197  struct ValueConverter {
199  };
200 
201 
202  Tree() {}
203 
204  Tree& operator=(const Tree&) = delete; // disallow assignment
205 
206  /// Deep copy constructor
207  Tree(const Tree& other): TreeBase(other), mRoot(other.mRoot)
208  {
209  }
210 
211  /// @brief Value conversion deep copy constructor
212  ///
213  /// Deep copy a tree of the same configuration as this tree type but a different
214  /// ValueType, casting the other tree's values to this tree's ValueType.
215  /// @throw TypeError if the other tree's configuration doesn't match this tree's
216  /// or if this tree's ValueType is not constructible from the other tree's ValueType.
217  template<typename OtherRootType>
218  explicit Tree(const Tree<OtherRootType>& other): TreeBase(other), mRoot(other.root())
219  {
220  }
221 
222  /// @brief Topology copy constructor from a tree of a different type
223  ///
224  /// Copy the structure, i.e., the active states of tiles and voxels, of another
225  /// tree of a possibly different type, but don't copy any tile or voxel values.
226  /// Instead, initialize tiles and voxels with the given active and inactive values.
227  /// @param other a tree having (possibly) a different ValueType
228  /// @param inactiveValue background value for this tree, and the value to which
229  /// all inactive tiles and voxels are initialized
230  /// @param activeValue value to which active tiles and voxels are initialized
231  /// @throw TypeError if the other tree's configuration doesn't match this tree's.
232  template<typename OtherTreeType>
233  Tree(const OtherTreeType& other,
234  const ValueType& inactiveValue,
235  const ValueType& activeValue,
236  TopologyCopy):
237  TreeBase(other),
238  mRoot(other.root(), inactiveValue, activeValue, TopologyCopy())
239  {
240  }
241 
242  /// @brief Topology copy constructor from a tree of a different type
243  ///
244  /// @note This topology copy constructor is generally faster than
245  /// the one that takes both a foreground and a background value.
246  ///
247  /// Copy the structure, i.e., the active states of tiles and voxels, of another
248  /// tree of a possibly different type, but don't copy any tile or voxel values.
249  /// Instead, initialize tiles and voxels with the given background value.
250  /// @param other a tree having (possibly) a different ValueType
251  /// @param background the value to which tiles and voxels are initialized
252  /// @throw TypeError if the other tree's configuration doesn't match this tree's.
253  template<typename OtherTreeType>
254  Tree(const OtherTreeType& other, const ValueType& background, TopologyCopy):
255  TreeBase(other),
256  mRoot(other.root(), background, TopologyCopy())
257  {
258  }
259 
260  /// Empty tree constructor
261  Tree(const ValueType& background): mRoot(background) {}
262 
263  ~Tree() override { this->clear(); releaseAllAccessors(); }
264 
265  /// Return a pointer to a deep copy of this tree
266  TreeBase::Ptr copy() const override { return TreeBase::Ptr(new Tree(*this)); }
267 
268  /// Return the name of the type of a voxel's value (e.g., "float" or "vec3d")
269  Name valueType() const override { return typeNameAsString<ValueType>(); }
270 
271  /// Return the name of this type of tree.
272  static const Name& treeType();
273  /// Return the name of this type of tree.
274  const Name& type() const override { return this->treeType(); }
275 
276  bool operator==(const Tree&) const { OPENVDB_THROW(NotImplementedError, ""); }
277  bool operator!=(const Tree&) const { OPENVDB_THROW(NotImplementedError, ""); }
278 
279  //@{
280  /// Return this tree's root node.
281  RootNodeType& root() { return mRoot; }
282  const RootNodeType& root() const { return mRoot; }
283  //@}
284 
285 
286  //
287  // Tree methods
288  //
289  /// @brief Return @c true if the given tree has the same node and active value
290  /// topology as this tree, whether or not it has the same @c ValueType.
291  template<typename OtherRootNodeType>
292  bool hasSameTopology(const Tree<OtherRootNodeType>& other) const;
293 
294  bool evalLeafBoundingBox(CoordBBox& bbox) const override;
295  bool evalActiveVoxelBoundingBox(CoordBBox& bbox) const override;
296  bool evalActiveVoxelDim(Coord& dim) const override;
297  bool evalLeafDim(Coord& dim) const override;
298 
299  /// @brief Traverse the type hierarchy of nodes, and return, in @a dims, a list
300  /// of the Log2Dims of nodes in order from RootNode to LeafNode.
301  /// @note Because RootNodes are resizable, the RootNode Log2Dim is 0 for all trees.
302  static void getNodeLog2Dims(std::vector<Index>& dims);
303 
304 
305  //
306  // I/O methods
307  //
308  /// @brief Read the tree topology from a stream.
309  ///
310  /// This will read the tree structure and tile values, but not voxel data.
311  void readTopology(std::istream&, bool saveFloatAsHalf = false) override;
312  /// @brief Write the tree topology to a stream.
313  ///
314  /// This will write the tree structure and tile values, but not voxel data.
315  void writeTopology(std::ostream&, bool saveFloatAsHalf = false) const override;
316  /// Read all data buffers for this tree.
317  void readBuffers(std::istream&, bool saveFloatAsHalf = false) override;
318  /// Read all of this tree's data buffers that intersect the given bounding box.
319  void readBuffers(std::istream&, const CoordBBox&, bool saveFloatAsHalf = false) override;
320  /// @brief Read all of this tree's data buffers that are not yet resident in memory
321  /// (because delayed loading is in effect).
322  /// @details If this tree was read from a memory-mapped file, this operation
323  /// disconnects the tree from the file.
324  /// @sa clipUnallocatedNodes, io::File::open, io::MappedFile
325  void readNonresidentBuffers() const override;
326  /// Write out all data buffers for this tree.
327  void writeBuffers(std::ostream&, bool saveFloatAsHalf = false) const override;
328 
329  void print(std::ostream& os = std::cout, int verboseLevel = 1) const override;
330 
331 
332  //
333  // Statistics
334  //
335  /// @brief Return the depth of this tree.
336  ///
337  /// A tree with only a root node and leaf nodes has depth 2, for example.
338  Index treeDepth() const override { return DEPTH; }
339  /// Return the number of leaf nodes.
340  Index32 leafCount() const override { return mRoot.leafCount(); }
341  /// Return a vector with node counts. The number of nodes of type NodeType
342  /// is given as element NodeType::LEVEL in the return vector. Thus, the size
343  /// of this vector corresponds to the height (or depth) of this tree.
344  std::vector<Index32> nodeCount() const override
345  {
346  std::vector<Index32> vec(DEPTH, 0);
347  mRoot.nodeCount( vec );
348  return vec;// Named Return Value Optimization
349  }
350  /// Return the number of non-leaf nodes.
351  Index32 nonLeafCount() const override { return mRoot.nonLeafCount(); }
352  /// Return the number of active voxels stored in leaf nodes.
353  Index64 activeLeafVoxelCount() const override { return tools::countActiveLeafVoxels(*this); }
354  /// Return the number of inactive voxels stored in leaf nodes.
356  /// Return the total number of active voxels.
357  Index64 activeVoxelCount() const override { return tools::countActiveVoxels(*this); }
358  /// Return the number of inactive voxels within the bounding box of all active voxels.
359  Index64 inactiveVoxelCount() const override { return tools::countInactiveVoxels(*this); }
360  /// Return the total number of active tiles.
361  Index64 activeTileCount() const override { return tools::countActiveTiles(*this); }
362 
363  /// Return the minimum and maximum active values in this tree.
364  OPENVDB_DEPRECATED_MESSAGE("Switch to tools::minMax. Use threaded = false for serial execution")
366 
367  Index64 memUsage() const override { return tools::memUsage(*this); }
368 
369 
370  //
371  // Voxel access methods (using signed indexing)
372  //
373  /// Return the value of the voxel at the given coordinates.
374  const ValueType& getValue(const Coord& xyz) const;
375  /// @brief Return the value of the voxel at the given coordinates
376  /// and update the given accessor's node cache.
377  template<typename AccessT> const ValueType& getValue(const Coord& xyz, AccessT&) const;
378 
379  /// @brief Return the tree depth (0 = root) at which the value of voxel (x, y, z) resides.
380  /// @details If (x, y, z) isn't explicitly represented in the tree (i.e., it is
381  /// implicitly a background voxel), return -1.
382  int getValueDepth(const Coord& xyz) const;
383 
384  /// Set the active state of the voxel at the given coordinates but don't change its value.
385  void setActiveState(const Coord& xyz, bool on);
386  /// Set the value of the voxel at the given coordinates but don't change its active state.
387  void setValueOnly(const Coord& xyz, const ValueType& value);
388  /// Mark the voxel at the given coordinates as active but don't change its value.
389  void setValueOn(const Coord& xyz);
390  /// Set the value of the voxel at the given coordinates and mark the voxel as active.
391  void setValueOn(const Coord& xyz, const ValueType& value);
392  /// Set the value of the voxel at the given coordinates and mark the voxel as active.
393  void setValue(const Coord& xyz, const ValueType& value);
394  /// @brief Set the value of the voxel at the given coordinates, mark the voxel as active,
395  /// and update the given accessor's node cache.
396  template<typename AccessT> void setValue(const Coord& xyz, const ValueType& value, AccessT&);
397  /// Mark the voxel at the given coordinates as inactive but don't change its value.
398  void setValueOff(const Coord& xyz);
399  /// Set the value of the voxel at the given coordinates and mark the voxel as inactive.
400  void setValueOff(const Coord& xyz, const ValueType& value);
401 
402  /// @brief Apply a functor to the value of the voxel at the given coordinates
403  /// and mark the voxel as active.
404  /// @details Provided that the functor can be inlined, this is typically
405  /// significantly faster than calling getValue() followed by setValueOn().
406  /// @param xyz the coordinates of a voxel whose value is to be modified
407  /// @param op a functor of the form <tt>void op(ValueType&) const</tt> that modifies
408  /// its argument in place
409  /// @par Example:
410  /// @code
411  /// Coord xyz(1, 0, -2);
412  /// // Multiply the value of a voxel by a constant and mark the voxel as active.
413  /// floatTree.modifyValue(xyz, [](float& f) { f *= 0.25; }); // C++11
414  /// // Set the value of a voxel to the maximum of its current value and 0.25,
415  /// // and mark the voxel as active.
416  /// floatTree.modifyValue(xyz, [](float& f) { f = std::max(f, 0.25f); }); // C++11
417  /// @endcode
418  /// @note The functor is not guaranteed to be called only once.
419  /// @see tools::foreach()
420  template<typename ModifyOp>
421  void modifyValue(const Coord& xyz, const ModifyOp& op);
422 
423  /// @brief Apply a functor to the voxel at the given coordinates.
424  /// @details Provided that the functor can be inlined, this is typically
425  /// significantly faster than calling getValue() followed by setValue().
426  /// @param xyz the coordinates of a voxel to be modified
427  /// @param op a functor of the form <tt>void op(ValueType&, bool&) const</tt> that
428  /// modifies its arguments, a voxel's value and active state, in place
429  /// @par Example:
430  /// @code
431  /// Coord xyz(1, 0, -2);
432  /// // Multiply the value of a voxel by a constant and mark the voxel as inactive.
433  /// floatTree.modifyValueAndActiveState(xyz,
434  /// [](float& f, bool& b) { f *= 0.25; b = false; }); // C++11
435  /// // Set the value of a voxel to the maximum of its current value and 0.25,
436  /// // but don't change the voxel's active state.
437  /// floatTree.modifyValueAndActiveState(xyz,
438  /// [](float& f, bool&) { f = std::max(f, 0.25f); }); // C++11
439  /// @endcode
440  /// @note The functor is not guaranteed to be called only once.
441  /// @see tools::foreach()
442  template<typename ModifyOp>
443  void modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op);
444 
445  /// @brief Get the value of the voxel at the given coordinates.
446  /// @return @c true if the value is active.
447  bool probeValue(const Coord& xyz, ValueType& value) const;
448 
449  /// Return @c true if the value at the given coordinates is active.
450  bool isValueOn(const Coord& xyz) const { return mRoot.isValueOn(xyz); }
451  /// Return @c true if the value at the given coordinates is inactive.
452  bool isValueOff(const Coord& xyz) const { return !this->isValueOn(xyz); }
453  /// Return @c true if this tree has any active tiles.
454  bool hasActiveTiles() const { return mRoot.hasActiveTiles(); }
455 
456  /// Set all voxels that lie outside the given axis-aligned box to the background.
457  void clip(const CoordBBox&);
458  /// @brief Replace with background tiles any nodes whose voxel buffers
459  /// have not yet been allocated.
460  /// @details Typically, unallocated nodes are leaf nodes whose voxel buffers
461  /// are not yet resident in memory because delayed loading is in effect.
462  /// @sa readNonresidentBuffers, io::File::open
463  void clipUnallocatedNodes() override;
464 
465  /// Return the total number of unallocated leaf nodes residing in this tree.
466  Index32 unallocatedLeafCount() const override;
467 
468  //@{
469  /// @brief Set all voxels within a given axis-aligned box to a constant value.
470  /// @param bbox inclusive coordinates of opposite corners of an axis-aligned box
471  /// @param value the value to which to set voxels within the box
472  /// @param active if true, mark voxels within the box as active,
473  /// otherwise mark them as inactive
474  /// @note This operation generates a sparse, but not always optimally sparse,
475  /// representation of the filled box. Follow fill operations with a prune()
476  /// operation for optimal sparseness.
477  void sparseFill(const CoordBBox& bbox, const ValueType& value, bool active = true);
478  void fill(const CoordBBox& bbox, const ValueType& value, bool active = true)
479  {
480  this->sparseFill(bbox, value, active);
481  }
482  //@}
483 
484  /// @brief Set all voxels within a given axis-aligned box to a constant value
485  /// and ensure that those voxels are all represented at the leaf level.
486  /// @param bbox inclusive coordinates of opposite corners of an axis-aligned box.
487  /// @param value the value to which to set voxels within the box.
488  /// @param active if true, mark voxels within the box as active,
489  /// otherwise mark them as inactive.
490  /// @sa voxelizeActiveTiles()
491  void denseFill(const CoordBBox& bbox, const ValueType& value, bool active = true);
492 
493  /// @brief Densify active tiles, i.e., replace them with leaf-level active voxels.
494  ///
495  /// @param threaded if true, this operation is multi-threaded (over the internal nodes).
496  ///
497  /// @warning This method can explode the tree's memory footprint, especially if it
498  /// contains active tiles at the upper levels (in particular the root level)!
499  ///
500  /// @sa denseFill()
501  void voxelizeActiveTiles(bool threaded = true);
502 
503  /// @brief Reduce the memory footprint of this tree by replacing with tiles
504  /// any nodes whose values are all the same (optionally to within a tolerance)
505  /// and have the same active state.
506  /// @warning Will soon be deprecated!
507  void prune(const ValueType& tolerance = zeroVal<ValueType>())
508  {
509  this->clearAllAccessors();
510  mRoot.prune(tolerance);
511  }
512 
513  /// @brief Add the given leaf node to this tree, creating a new branch if necessary.
514  /// If a leaf node with the same origin already exists, replace it.
515  ///
516  /// @warning Ownership of the leaf is transferred to the tree so
517  /// the client code should not attempt to delete the leaf pointer!
518  void addLeaf(LeafNodeType* leaf) { assert(leaf); mRoot.addLeaf(leaf); }
519 
520  /// @brief Add a tile containing voxel (x, y, z) at the specified tree level,
521  /// creating a new branch if necessary. Delete any existing lower-level nodes
522  /// that contain (x, y, z).
523  /// @note @a level must be less than this tree's depth.
524  void addTile(Index level, const Coord& xyz, const ValueType& value, bool active);
525 
526  /// @brief Return a pointer to the node of type @c NodeT that contains voxel (x, y, z)
527  /// and replace it with a tile of the specified value and state.
528  /// If no such node exists, leave the tree unchanged and return @c nullptr.
529  /// @note The caller takes ownership of the node and is responsible for deleting it.
530  template<typename NodeT>
531  NodeT* stealNode(const Coord& xyz, const ValueType& value, bool active);
532 
533  /// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
534  /// If no such node exists, create one that preserves the values and
535  /// active states of all voxels.
536  /// @details Use this method to preallocate a static tree topology over which to
537  /// safely perform multithreaded processing.
538  LeafNodeType* touchLeaf(const Coord& xyz);
539 
540  //@{
541  /// @brief Return a pointer to the node of type @c NodeType that contains
542  /// voxel (x, y, z). If no such node exists, return @c nullptr.
543  template<typename NodeType> NodeType* probeNode(const Coord& xyz);
544  template<typename NodeType> const NodeType* probeConstNode(const Coord& xyz) const;
545  template<typename NodeType> const NodeType* probeNode(const Coord& xyz) const;
546  //@}
547 
548  //@{
549  /// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
550  /// If no such node exists, return @c nullptr.
551  LeafNodeType* probeLeaf(const Coord& xyz);
552  const LeafNodeType* probeConstLeaf(const Coord& xyz) const;
553  const LeafNodeType* probeLeaf(const Coord& xyz) const { return this->probeConstLeaf(xyz); }
554  //@}
555 
556  //@{
557  /// @brief Adds all nodes of a certain type to a container with the following API:
558  /// @code
559  /// struct ArrayT {
560  /// using value_type = ...; // the type of node to be added to the array
561  /// void push_back(value_type nodePtr); // add a node to the array
562  /// };
563  /// @endcode
564  /// @details An example of a wrapper around a c-style array is:
565  /// @code
566  /// struct MyArray {
567  /// using value_type = LeafType*;
568  /// value_type* ptr;
569  /// MyArray(value_type* array) : ptr(array) {}
570  /// void push_back(value_type leaf) { *ptr++ = leaf; }
571  ///};
572  /// @endcode
573  /// @details An example that constructs a list of pointer to all leaf nodes is:
574  /// @code
575  /// std::vector<const LeafNodeType*> array;//most std contains have the required API
576  /// array.reserve(tree.leafCount());//this is a fast preallocation.
577  /// tree.getNodes(array);
578  /// @endcode
579  template<typename ArrayT> void getNodes(ArrayT& array);
580  template<typename ArrayT> void getNodes(ArrayT& array) const;
581  //@}
582 
583  /// @brief Steals all nodes of a certain type from the tree and
584  /// adds them to a container with the following API:
585  /// @code
586  /// struct ArrayT {
587  /// using value_type = ...; // the type of node to be added to the array
588  /// void push_back(value_type nodePtr); // add a node to the array
589  /// };
590  /// @endcode
591  /// @details An example of a wrapper around a c-style array is:
592  /// @code
593  /// struct MyArray {
594  /// using value_type = LeafType*;
595  /// value_type* ptr;
596  /// MyArray(value_type* array) : ptr(array) {}
597  /// void push_back(value_type leaf) { *ptr++ = leaf; }
598  ///};
599  /// @endcode
600  /// @details An example that constructs a list of pointer to all leaf nodes is:
601  /// @code
602  /// std::vector<const LeafNodeType*> array;//most std contains have the required API
603  /// array.reserve(tree.leafCount());//this is a fast preallocation.
604  /// tree.stealNodes(array);
605  /// @endcode
606  template<typename ArrayT>
607  void stealNodes(ArrayT& array) { this->clearAllAccessors(); mRoot.stealNodes(array); }
608  template<typename ArrayT>
609  void stealNodes(ArrayT& array, const ValueType& value, bool state)
610  {
611  this->clearAllAccessors();
612  mRoot.stealNodes(array, value, state);
613  }
614 
615  //
616  // Aux methods
617  //
618  /// @brief Return @c true if this tree contains no nodes other than
619  /// the root node and no tiles other than background tiles.
620  bool empty() const { return mRoot.empty(); }
621 
622  /// Remove all tiles from this tree and all nodes other than the root node.
623  void clear();
624 
625  /// Clear all registered accessors.
626  void clearAllAccessors();
627 
628  //@{
629  /// @brief Register an accessor for this tree. Registered accessors are
630  /// automatically cleared whenever one of this tree's nodes is deleted.
633  //@}
634 
635  //@{
636  /// Dummy implementations
639  //@}
640 
641  //@{
642  /// Deregister an accessor so that it is no longer automatically cleared.
645  //@}
646 
647  //@{
648  /// Dummy implementations
651  //@}
652 
653  /// @brief Return this tree's background value wrapped as metadata.
654  /// @note Query the metadata object for the value's type.
655  Metadata::Ptr getBackgroundValue() const override;
656 
657  /// @brief Return this tree's background value.
658  ///
659  /// @note Use tools::changeBackground to efficiently modify the
660  /// background values. Else use tree.root().setBackground, which
661  /// is serial and hence slower.
662  const ValueType& background() const { return mRoot.background(); }
663 
664  /// Min and max are both inclusive.
665  void getIndexRange(CoordBBox& bbox) const override { mRoot.getIndexRange(bbox); }
666 
667  /// @brief Efficiently merge another tree into this tree using one of several schemes.
668  /// @details This operation is primarily intended to combine trees that are mostly
669  /// non-overlapping (for example, intermediate trees from computations that are
670  /// parallelized across disjoint regions of space).
671  /// @note This operation is not guaranteed to produce an optimally sparse tree.
672  /// Follow merge() with prune() for optimal sparseness.
673  /// @warning This operation always empties the other tree.
674  void merge(Tree& other, MergePolicy = MERGE_ACTIVE_STATES);
675 
676  /// @brief Union this tree's set of active values with the active values
677  /// of the other tree, whose @c ValueType may be different.
678  /// @details The resulting state of a value is active if the corresponding value
679  /// was already active OR if it is active in the other tree. Also, a resulting
680  /// value maps to a voxel if the corresponding value already mapped to a voxel
681  /// OR if it is a voxel in the other tree. Thus, a resulting value can only
682  /// map to a tile if the corresponding value already mapped to a tile
683  /// AND if it is a tile value in other tree.
684  ///
685  /// @note This operation modifies only active states, not values.
686  /// Specifically, active tiles and voxels in this tree are not changed, and
687  /// tiles or voxels that were inactive in this tree but active in the other tree
688  /// are marked as active in this tree but left with their original values.
689  ///
690  /// @note If preserveTiles is true, any active tile in this topology
691  /// will not be densified by overlapping child topology.
692  template<typename OtherRootNodeType>
693  void topologyUnion(const Tree<OtherRootNodeType>& other, const bool preserveTiles = false);
694 
695  /// @brief Intersects this tree's set of active values with the active values
696  /// of the other tree, whose @c ValueType may be different.
697  /// @details The resulting state of a value is active only if the corresponding
698  /// value was already active AND if it is active in the other tree. Also, a
699  /// resulting value maps to a voxel if the corresponding value
700  /// already mapped to an active voxel in either of the two grids
701  /// and it maps to an active tile or voxel in the other grid.
702  ///
703  /// @note This operation can delete branches in this grid if they
704  /// overlap with inactive tiles in the other grid. Likewise active
705  /// voxels can be turned into inactive voxels resulting in leaf
706  /// nodes with no active values. Thus, it is recommended to
707  /// subsequently call tools::pruneInactive.
708  template<typename OtherRootNodeType>
710 
711  /// @brief Difference this tree's set of active values with the active values
712  /// of the other tree, whose @c ValueType may be different. So a
713  /// resulting voxel will be active only if the original voxel is
714  /// active in this tree and inactive in the other tree.
715  ///
716  /// @note This operation can delete branches in this grid if they
717  /// overlap with active tiles in the other grid. Likewise active
718  /// voxels can be turned into inactive voxels resulting in leaf
719  /// nodes with no active values. Thus, it is recommended to
720  /// subsequently call tools::pruneInactive.
721  template<typename OtherRootNodeType>
722  void topologyDifference(const Tree<OtherRootNodeType>& other);
723 
724  /// For a given function @c f, use sparse traversal to compute <tt>f(this, other)</tt>
725  /// over all corresponding pairs of values (tile or voxel) of this tree and the other tree
726  /// and store the result in this tree.
727  /// This method is typically more space-efficient than the two-tree combine2(),
728  /// since it moves rather than copies nodes from the other tree into this tree.
729  /// @note This operation always empties the other tree.
730  /// @param other a tree of the same type as this tree
731  /// @param op a functor of the form <tt>void op(const T& a, const T& b, T& result)</tt>,
732  /// where @c T is this tree's @c ValueType, that computes
733  /// <tt>result = f(a, b)</tt>
734  /// @param prune if true, prune the resulting tree one branch at a time (this is usually
735  /// more space-efficient than pruning the entire tree in one pass)
736  ///
737  /// @par Example:
738  /// Compute the per-voxel difference between two floating-point trees,
739  /// @c aTree and @c bTree, and store the result in @c aTree (leaving @c bTree empty).
740  /// @code
741  /// {
742  /// struct Local {
743  /// static inline void diff(const float& a, const float& b, float& result) {
744  /// result = a - b;
745  /// }
746  /// };
747  /// aTree.combine(bTree, Local::diff);
748  /// }
749  /// @endcode
750  ///
751  /// @par Example:
752  /// Compute <tt>f * a + (1 - f) * b</tt> over all voxels of two floating-point trees,
753  /// @c aTree and @c bTree, and store the result in @c aTree (leaving @c bTree empty).
754  /// @code
755  /// namespace {
756  /// struct Blend {
757  /// Blend(float f): frac(f) {}
758  /// inline void operator()(const float& a, const float& b, float& result) const {
759  /// result = frac * a + (1.0 - frac) * b;
760  /// }
761  /// float frac;
762  /// };
763  /// }
764  /// {
765  /// aTree.combine(bTree, Blend(0.25)); // 0.25 * a + 0.75 * b
766  /// }
767  /// @endcode
768  template<typename CombineOp>
769  void combine(Tree& other, CombineOp& op, bool prune = false);
770  template<typename CombineOp>
771  void combine(Tree& other, const CombineOp& op, bool prune = false);
772 
773  /// Like combine(), but with
774  /// @param other a tree of the same type as this tree
775  /// @param op a functor of the form <tt>void op(CombineArgs<ValueType>& args)</tt> that
776  /// computes <tt>args.setResult(f(args.a(), args.b()))</tt> and, optionally,
777  /// <tt>args.setResultIsActive(g(args.aIsActive(), args.bIsActive()))</tt>
778  /// for some functions @c f and @c g
779  /// @param prune if true, prune the resulting tree one branch at a time (this is usually
780  /// more space-efficient than pruning the entire tree in one pass)
781  ///
782  /// This variant passes not only the @em a and @em b values but also the active states
783  /// of the @em a and @em b values to the functor, which may then return, by calling
784  /// @c args.setResultIsActive(), a computed active state for the result value.
785  /// By default, the result is active if either the @em a or the @em b value is active.
786  ///
787  /// @see openvdb/Types.h for the definition of the CombineArgs struct.
788  ///
789  /// @par Example:
790  /// Replace voxel values in floating-point @c aTree with corresponding values
791  /// from floating-point @c bTree (leaving @c bTree empty) wherever the @c bTree
792  /// values are larger. Also, preserve the active states of any transferred values.
793  /// @code
794  /// {
795  /// struct Local {
796  /// static inline void max(CombineArgs<float>& args) {
797  /// if (args.b() > args.a()) {
798  /// // Transfer the B value and its active state.
799  /// args.setResult(args.b());
800  /// args.setResultIsActive(args.bIsActive());
801  /// } else {
802  /// // Preserve the A value and its active state.
803  /// args.setResult(args.a());
804  /// args.setResultIsActive(args.aIsActive());
805  /// }
806  /// }
807  /// };
808  /// aTree.combineExtended(bTree, Local::max);
809  /// }
810  /// @endcode
811  template<typename ExtendedCombineOp>
812  void combineExtended(Tree& other, ExtendedCombineOp& op, bool prune = false);
813  template<typename ExtendedCombineOp>
814  void combineExtended(Tree& other, const ExtendedCombineOp& op, bool prune = false);
815 
816  /// For a given function @c f, use sparse traversal to compute <tt>f(a, b)</tt> over all
817  /// corresponding pairs of values (tile or voxel) of trees A and B and store the result
818  /// in this tree.
819  /// @param a,b two trees with the same configuration (levels and node dimensions)
820  /// as this tree but with the B tree possibly having a different value type
821  /// @param op a functor of the form <tt>void op(const T1& a, const T2& b, T1& result)</tt>,
822  /// where @c T1 is this tree's and the A tree's @c ValueType and @c T2 is the
823  /// B tree's @c ValueType, that computes <tt>result = f(a, b)</tt>
824  /// @param prune if true, prune the resulting tree one branch at a time (this is usually
825  /// more space-efficient than pruning the entire tree in one pass)
826  ///
827  /// @throw TypeError if the B tree's configuration doesn't match this tree's
828  /// or if this tree's ValueType is not constructible from the B tree's ValueType.
829  ///
830  /// @par Example:
831  /// Compute the per-voxel difference between two floating-point trees,
832  /// @c aTree and @c bTree, and store the result in a third tree.
833  /// @code
834  /// {
835  /// struct Local {
836  /// static inline void diff(const float& a, const float& b, float& result) {
837  /// result = a - b;
838  /// }
839  /// };
840  /// FloatTree resultTree;
841  /// resultTree.combine2(aTree, bTree, Local::diff);
842  /// }
843  /// @endcode
844  template<typename CombineOp, typename OtherTreeType /*= Tree*/>
845  void combine2(const Tree& a, const OtherTreeType& b, CombineOp& op, bool prune = false);
846  template<typename CombineOp, typename OtherTreeType /*= Tree*/>
847  void combine2(const Tree& a, const OtherTreeType& b, const CombineOp& op, bool prune = false);
848 
849  /// Like combine2(), but with
850  /// @param a,b two trees with the same configuration (levels and node dimensions)
851  /// as this tree but with the B tree possibly having a different value type
852  /// @param op a functor of the form <tt>void op(CombineArgs<T1, T2>& args)</tt>, where
853  /// @c T1 is this tree's and the A tree's @c ValueType and @c T2 is the B tree's
854  /// @c ValueType, that computes <tt>args.setResult(f(args.a(), args.b()))</tt>
855  /// and, optionally,
856  /// <tt>args.setResultIsActive(g(args.aIsActive(), args.bIsActive()))</tt>
857  /// for some functions @c f and @c g
858  /// @param prune if true, prune the resulting tree one branch at a time (this is usually
859  /// more space-efficient than pruning the entire tree in one pass)
860  /// This variant passes not only the @em a and @em b values but also the active states
861  /// of the @em a and @em b values to the functor, which may then return, by calling
862  /// <tt>args.setResultIsActive()</tt>, a computed active state for the result value.
863  /// By default, the result is active if either the @em a or the @em b value is active.
864  ///
865  /// @throw TypeError if the B tree's configuration doesn't match this tree's
866  /// or if this tree's ValueType is not constructible from the B tree's ValueType.
867  ///
868  /// @see openvdb/Types.h for the definition of the CombineArgs struct.
869  ///
870  /// @par Example:
871  /// Compute the per-voxel maximum values of two single-precision floating-point trees,
872  /// @c aTree and @c bTree, and store the result in a third tree. Set the active state
873  /// of each output value to that of the larger of the two input values.
874  /// @code
875  /// {
876  /// struct Local {
877  /// static inline void max(CombineArgs<float>& args) {
878  /// if (args.b() > args.a()) {
879  /// // Transfer the B value and its active state.
880  /// args.setResult(args.b());
881  /// args.setResultIsActive(args.bIsActive());
882  /// } else {
883  /// // Preserve the A value and its active state.
884  /// args.setResult(args.a());
885  /// args.setResultIsActive(args.aIsActive());
886  /// }
887  /// }
888  /// };
889  /// FloatTree aTree = ...;
890  /// FloatTree bTree = ...;
891  /// FloatTree resultTree;
892  /// resultTree.combine2Extended(aTree, bTree, Local::max);
893  /// }
894  /// @endcode
895  ///
896  /// @par Example:
897  /// Compute the per-voxel maximum values of a double-precision and a single-precision
898  /// floating-point tree, @c aTree and @c bTree, and store the result in a third,
899  /// double-precision tree. Set the active state of each output value to that of
900  /// the larger of the two input values.
901  /// @code
902  /// {
903  /// struct Local {
904  /// static inline void max(CombineArgs<double, float>& args) {
905  /// if (args.b() > args.a()) {
906  /// // Transfer the B value and its active state.
907  /// args.setResult(args.b());
908  /// args.setResultIsActive(args.bIsActive());
909  /// } else {
910  /// // Preserve the A value and its active state.
911  /// args.setResult(args.a());
912  /// args.setResultIsActive(args.aIsActive());
913  /// }
914  /// }
915  /// };
916  /// DoubleTree aTree = ...;
917  /// FloatTree bTree = ...;
918  /// DoubleTree resultTree;
919  /// resultTree.combine2Extended(aTree, bTree, Local::max);
920  /// }
921  /// @endcode
922  template<typename ExtendedCombineOp, typename OtherTreeType /*= Tree*/>
923  void combine2Extended(const Tree& a, const OtherTreeType& b, ExtendedCombineOp& op,
924  bool prune = false);
925  template<typename ExtendedCombineOp, typename OtherTreeType /*= Tree*/>
926  void combine2Extended(const Tree& a, const OtherTreeType& b, const ExtendedCombineOp&,
927  bool prune = false);
928 
929  //
930  // Iteration
931  //
932  //@{
933  /// Return an iterator over children of the root node.
934  typename RootNodeType::ChildOnCIter beginRootChildren() const { return mRoot.cbeginChildOn(); }
935  typename RootNodeType::ChildOnCIter cbeginRootChildren() const { return mRoot.cbeginChildOn(); }
936  typename RootNodeType::ChildOnIter beginRootChildren() { return mRoot.beginChildOn(); }
937  //@}
938 
939  //@{
940  /// Return an iterator over non-child entries of the root node's table.
941  typename RootNodeType::ChildOffCIter beginRootTiles() const { return mRoot.cbeginChildOff(); }
942  typename RootNodeType::ChildOffCIter cbeginRootTiles() const { return mRoot.cbeginChildOff(); }
943  typename RootNodeType::ChildOffIter beginRootTiles() { return mRoot.beginChildOff(); }
944  //@}
945 
946  //@{
947  /// Return an iterator over all entries of the root node's table.
948  typename RootNodeType::ChildAllCIter beginRootDense() const { return mRoot.cbeginChildAll(); }
949  typename RootNodeType::ChildAllCIter cbeginRootDense() const { return mRoot.cbeginChildAll(); }
950  typename RootNodeType::ChildAllIter beginRootDense() { return mRoot.beginChildAll(); }
951  //@}
952 
953 
954  //@{
955  /// Iterator over all nodes in this tree
958  //@}
959 
960  //@{
961  /// Iterator over all leaf nodes in this tree
964  //@}
965 
966  //@{
967  /// Return an iterator over all nodes in this tree.
968  NodeIter beginNode() { return NodeIter(*this); }
969  NodeCIter beginNode() const { return NodeCIter(*this); }
970  NodeCIter cbeginNode() const { return NodeCIter(*this); }
971  //@}
972 
973  //@{
974  /// Return an iterator over all leaf nodes in this tree.
975  LeafIter beginLeaf() { return LeafIter(*this); }
976  LeafCIter beginLeaf() const { return LeafCIter(*this); }
977  LeafCIter cbeginLeaf() const { return LeafCIter(*this); }
978  //@}
979 
986 
987  //@{
988  /// Return an iterator over all values (tile and voxel) across all nodes.
990  ValueAllCIter beginValueAll() const { return ValueAllCIter(*this); }
991  ValueAllCIter cbeginValueAll() const { return ValueAllCIter(*this); }
992  //@}
993  //@{
994  /// Return an iterator over active values (tile and voxel) across all nodes.
995  ValueOnIter beginValueOn() { return ValueOnIter(*this); }
996  ValueOnCIter beginValueOn() const { return ValueOnCIter(*this); }
997  ValueOnCIter cbeginValueOn() const { return ValueOnCIter(*this); }
998  //@}
999  //@{
1000  /// Return an iterator over inactive values (tile and voxel) across all nodes.
1002  ValueOffCIter beginValueOff() const { return ValueOffCIter(*this); }
1003  ValueOffCIter cbeginValueOff() const { return ValueOffCIter(*this); }
1004  //@}
1005 
1006  /// @brief Return an iterator of type @c IterT (for example, begin<ValueOnIter>() is
1007  /// equivalent to beginValueOn()).
1008  template<typename IterT> IterT begin();
1009  /// @brief Return a const iterator of type CIterT (for example, cbegin<ValueOnCIter>()
1010  /// is equivalent to cbeginValueOn()).
1011  template<typename CIterT> CIterT cbegin() const;
1012 
1013 
1014 protected:
1015  using AccessorRegistry = tbb::concurrent_hash_map<ValueAccessorBase<Tree, true>*, bool>;
1016  using ConstAccessorRegistry = tbb::concurrent_hash_map<ValueAccessorBase<const Tree, true>*, bool>;
1017 
1018  /// @brief Notify all registered accessors, by calling ValueAccessor::release(),
1019  /// that this tree is about to be deleted.
1020  void releaseAllAccessors();
1021 
1022  // TBB body object used to deallocates nodes in parallel.
1023  template<typename NodeType>
1025  DeallocateNodes(std::vector<NodeType*>& nodes)
1026  : mNodes(nodes.empty() ? nullptr : &nodes.front()) { }
1027  void operator()(const tbb::blocked_range<size_t>& range) const {
1028  for (size_t n = range.begin(), N = range.end(); n < N; ++n) {
1029  delete mNodes[n]; mNodes[n] = nullptr;
1030  }
1031  }
1032  NodeType ** const mNodes;
1033  };
1034 
1035  //
1036  // Data members
1037  //
1038  RootNodeType mRoot; // root node of the tree
1041 }; // end of Tree class
1042 
1043 
1044 /// @brief Tree3<T, N1, N2>::Type is the type of a three-level tree
1045 /// (Root, Internal, Leaf) with value type T and
1046 /// internal and leaf node log dimensions N1 and N2, respectively.
1047 /// @note This is NOT the standard tree configuration (Tree4 is).
1048 template<typename T, Index N1=4, Index N2=3>
1049 struct Tree3 {
1051 };
1052 
1053 
1054 /// @brief Tree4<T, N1, N2, N3>::Type is the type of a four-level tree
1055 /// (Root, Internal, Internal, Leaf) with value type T and
1056 /// internal and leaf node log dimensions N1, N2 and N3, respectively.
1057 /// @note This is the standard tree configuration.
1058 template<typename T, Index N1=5, Index N2=4, Index N3=3>
1059 struct Tree4 {
1061 };
1062 
1063 /// @brief Tree5<T, N1, N2, N3, N4>::Type is the type of a five-level tree
1064 /// (Root, Internal, Internal, Internal, Leaf) with value type T and
1065 /// internal and leaf node log dimensions N1, N2, N3 and N4, respectively.
1066 /// @note This is NOT the standard tree configuration (Tree4 is).
1067 template<typename T, Index N1=6, Index N2=5, Index N3=4, Index N4=3>
1068 struct Tree5 {
1069  using Type =
1071 };
1072 
1073 
1074 ////////////////////////////////////////
1075 
1076 
1077 inline void
1078 TreeBase::readTopology(std::istream& is, bool /*saveFloatAsHalf*/)
1079 {
1080  int32_t bufferCount;
1081  is.read(reinterpret_cast<char*>(&bufferCount), sizeof(int32_t));
1082  if (bufferCount != 1) OPENVDB_LOG_WARN("multi-buffer trees are no longer supported");
1083 }
1084 
1085 
1086 inline void
1087 TreeBase::writeTopology(std::ostream& os, bool /*saveFloatAsHalf*/) const
1088 {
1089  int32_t bufferCount = 1;
1090  os.write(reinterpret_cast<char*>(&bufferCount), sizeof(int32_t));
1091 }
1092 
1093 
1094 inline void
1095 TreeBase::print(std::ostream& os, int /*verboseLevel*/) const
1096 {
1097  os << " Tree Type: " << type()
1098  << " Active Voxel Count: " << activeVoxelCount() << std::endl
1099  << " Active tile Count: " << activeTileCount() << std::endl
1100  << " Inactive Voxel Count: " << inactiveVoxelCount() << std::endl
1101  << " Leaf Node Count: " << leafCount() << std::endl
1102  << " Non-leaf Node Count: " << nonLeafCount() << std::endl;
1103 }
1104 
1105 
1106 ////////////////////////////////////////
1107 
1108 
1109 //
1110 // Type traits for tree iterators
1111 //
1112 
1113 /// @brief TreeIterTraits provides, for all tree iterators, a begin(tree) function
1114 /// that returns an iterator over a tree of arbitrary type.
1115 template<typename TreeT, typename IterT> struct TreeIterTraits;
1116 
1117 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOnIter> {
1118  static typename TreeT::RootNodeType::ChildOnIter begin(TreeT& tree) {
1119  return tree.beginRootChildren();
1120  }
1121 };
1122 
1123 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOnCIter> {
1124  static typename TreeT::RootNodeType::ChildOnCIter begin(const TreeT& tree) {
1125  return tree.cbeginRootChildren();
1126  }
1127 };
1128 
1129 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOffIter> {
1130  static typename TreeT::RootNodeType::ChildOffIter begin(TreeT& tree) {
1131  return tree.beginRootTiles();
1132  }
1133 };
1134 
1135 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOffCIter> {
1136  static typename TreeT::RootNodeType::ChildOffCIter begin(const TreeT& tree) {
1137  return tree.cbeginRootTiles();
1138  }
1139 };
1140 
1141 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildAllIter> {
1142  static typename TreeT::RootNodeType::ChildAllIter begin(TreeT& tree) {
1143  return tree.beginRootDense();
1144  }
1145 };
1146 
1147 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildAllCIter> {
1148  static typename TreeT::RootNodeType::ChildAllCIter begin(const TreeT& tree) {
1149  return tree.cbeginRootDense();
1150  }
1151 };
1152 
1153 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::NodeIter> {
1154  static typename TreeT::NodeIter begin(TreeT& tree) { return tree.beginNode(); }
1155 };
1156 
1157 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::NodeCIter> {
1158  static typename TreeT::NodeCIter begin(const TreeT& tree) { return tree.cbeginNode(); }
1159 };
1160 
1161 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::LeafIter> {
1162  static typename TreeT::LeafIter begin(TreeT& tree) { return tree.beginLeaf(); }
1163 };
1164 
1165 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::LeafCIter> {
1166  static typename TreeT::LeafCIter begin(const TreeT& tree) { return tree.cbeginLeaf(); }
1167 };
1168 
1169 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOnIter> {
1170  static typename TreeT::ValueOnIter begin(TreeT& tree) { return tree.beginValueOn(); }
1171 };
1172 
1173 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOnCIter> {
1174  static typename TreeT::ValueOnCIter begin(const TreeT& tree) { return tree.cbeginValueOn(); }
1175 };
1176 
1177 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOffIter> {
1178  static typename TreeT::ValueOffIter begin(TreeT& tree) { return tree.beginValueOff(); }
1179 };
1180 
1181 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOffCIter> {
1182  static typename TreeT::ValueOffCIter begin(const TreeT& tree) { return tree.cbeginValueOff(); }
1183 };
1184 
1185 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueAllIter> {
1186  static typename TreeT::ValueAllIter begin(TreeT& tree) { return tree.beginValueAll(); }
1187 };
1188 
1189 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueAllCIter> {
1190  static typename TreeT::ValueAllCIter begin(const TreeT& tree) { return tree.cbeginValueAll(); }
1191 };
1192 
1193 
1194 template<typename RootNodeType>
1195 template<typename IterT>
1196 inline IterT
1198 {
1199  return TreeIterTraits<Tree, IterT>::begin(*this);
1200 }
1201 
1202 
1203 template<typename RootNodeType>
1204 template<typename IterT>
1205 inline IterT
1207 {
1208  return TreeIterTraits<Tree, IterT>::begin(*this);
1209 }
1210 
1211 
1212 ////////////////////////////////////////
1213 
1214 
1215 template<typename RootNodeType>
1216 void
1217 Tree<RootNodeType>::readTopology(std::istream& is, bool saveFloatAsHalf)
1218 {
1219  this->clearAllAccessors();
1220  TreeBase::readTopology(is, saveFloatAsHalf);
1221  mRoot.readTopology(is, saveFloatAsHalf);
1222 }
1223 
1224 
1225 template<typename RootNodeType>
1226 void
1227 Tree<RootNodeType>::writeTopology(std::ostream& os, bool saveFloatAsHalf) const
1228 {
1229  TreeBase::writeTopology(os, saveFloatAsHalf);
1230  mRoot.writeTopology(os, saveFloatAsHalf);
1231 }
1232 
1233 
1234 template<typename RootNodeType>
1235 inline void
1236 Tree<RootNodeType>::readBuffers(std::istream &is, bool saveFloatAsHalf)
1237 {
1238  this->clearAllAccessors();
1239  mRoot.readBuffers(is, saveFloatAsHalf);
1240 }
1241 
1242 
1243 template<typename RootNodeType>
1244 inline void
1245 Tree<RootNodeType>::readBuffers(std::istream &is, const CoordBBox& bbox, bool saveFloatAsHalf)
1246 {
1247  this->clearAllAccessors();
1248  mRoot.readBuffers(is, bbox, saveFloatAsHalf);
1249 }
1250 
1251 
1252 template<typename RootNodeType>
1253 inline void
1255 {
1256  for (LeafCIter it = this->cbeginLeaf(); it; ++it) {
1257  // Retrieving the value of a leaf voxel forces loading of the leaf node's voxel buffer.
1258  it->getValue(Index(0));
1259  }
1260 }
1261 
1262 
1263 template<typename RootNodeType>
1264 inline void
1265 Tree<RootNodeType>::writeBuffers(std::ostream &os, bool saveFloatAsHalf) const
1266 {
1267  mRoot.writeBuffers(os, saveFloatAsHalf);
1268 }
1269 
1270 
1271 template<typename RootNodeType>
1272 template<typename ArrayT>
1273 inline void
1275 {
1278  "getNodes() does not work for the RootNode. Use Tree::root()");
1279  mRoot.getNodes(array);
1280 }
1281 
1282 
1283 template<typename RootNodeType>
1284 template<typename ArrayT>
1285 inline void
1286 Tree<RootNodeType>::getNodes(ArrayT& array) const
1287 {
1290  "getNodes() does not work for the RootNode. Use Tree::root()");
1291  mRoot.getNodes(array);
1292 }
1293 
1294 
1295 template<typename RootNodeType>
1296 inline void
1298 {
1299  std::vector<LeafNodeType*> leafnodes;
1300  this->stealNodes(leafnodes);
1301 
1302  tbb::parallel_for(tbb::blocked_range<size_t>(0, leafnodes.size()),
1303  DeallocateNodes<LeafNodeType>(leafnodes));
1304 
1305  std::vector<typename RootNodeType::ChildNodeType*> internalNodes;
1306  this->stealNodes(internalNodes);
1307 
1308  tbb::parallel_for(tbb::blocked_range<size_t>(0, internalNodes.size()),
1310 
1311  mRoot.clear();
1312 
1313  this->clearAllAccessors();
1314 }
1315 
1316 
1317 ////////////////////////////////////////
1318 
1319 
1320 template<typename RootNodeType>
1321 inline void
1323 {
1324  typename AccessorRegistry::accessor a;
1325  mAccessorRegistry.insert(a, &accessor);
1326 }
1327 
1328 
1329 template<typename RootNodeType>
1330 inline void
1332 {
1333  typename ConstAccessorRegistry::accessor a;
1334  mConstAccessorRegistry.insert(a, &accessor);
1335 }
1336 
1337 
1338 template<typename RootNodeType>
1339 inline void
1341 {
1342  mAccessorRegistry.erase(&accessor);
1343 }
1344 
1345 
1346 template<typename RootNodeType>
1347 inline void
1349 {
1350  mConstAccessorRegistry.erase(&accessor);
1351 }
1352 
1353 
1354 template<typename RootNodeType>
1355 inline void
1357 {
1358  for (typename AccessorRegistry::iterator it = mAccessorRegistry.begin();
1359  it != mAccessorRegistry.end(); ++it)
1360  {
1361  if (it->first) it->first->clear();
1362  }
1363 
1364  for (typename ConstAccessorRegistry::iterator it = mConstAccessorRegistry.begin();
1365  it != mConstAccessorRegistry.end(); ++it)
1366  {
1367  if (it->first) it->first->clear();
1368  }
1369 }
1370 
1371 
1372 template<typename RootNodeType>
1373 inline void
1375 {
1376  mAccessorRegistry.erase(nullptr);
1377  for (typename AccessorRegistry::iterator it = mAccessorRegistry.begin();
1378  it != mAccessorRegistry.end(); ++it)
1379  {
1380  it->first->release();
1381  }
1382  mAccessorRegistry.clear();
1383 
1384  mAccessorRegistry.erase(nullptr);
1385  for (typename ConstAccessorRegistry::iterator it = mConstAccessorRegistry.begin();
1386  it != mConstAccessorRegistry.end(); ++it)
1387  {
1388  it->first->release();
1389  }
1390  mConstAccessorRegistry.clear();
1391 }
1392 
1393 
1394 ////////////////////////////////////////
1395 
1396 
1397 template<typename RootNodeType>
1398 inline const typename RootNodeType::ValueType&
1399 Tree<RootNodeType>::getValue(const Coord& xyz) const
1400 {
1401  return mRoot.getValue(xyz);
1402 }
1403 
1404 
1405 template<typename RootNodeType>
1406 template<typename AccessT>
1407 inline const typename RootNodeType::ValueType&
1408 Tree<RootNodeType>::getValue(const Coord& xyz, AccessT& accessor) const
1409 {
1410  return accessor.getValue(xyz);
1411 }
1412 
1413 
1414 template<typename RootNodeType>
1415 inline int
1416 Tree<RootNodeType>::getValueDepth(const Coord& xyz) const
1417 {
1418  return mRoot.getValueDepth(xyz);
1419 }
1420 
1421 
1422 template<typename RootNodeType>
1423 inline void
1425 {
1426  mRoot.setValueOff(xyz);
1427 }
1428 
1429 
1430 template<typename RootNodeType>
1431 inline void
1433 {
1434  mRoot.setValueOff(xyz, value);
1435 }
1436 
1437 
1438 template<typename RootNodeType>
1439 inline void
1440 Tree<RootNodeType>::setActiveState(const Coord& xyz, bool on)
1441 {
1442  mRoot.setActiveState(xyz, on);
1443 }
1444 
1445 
1446 template<typename RootNodeType>
1447 inline void
1449 {
1450  mRoot.setValueOn(xyz, value);
1451 }
1452 
1453 template<typename RootNodeType>
1454 inline void
1456 {
1457  mRoot.setValueOnly(xyz, value);
1458 }
1459 
1460 template<typename RootNodeType>
1461 template<typename AccessT>
1462 inline void
1463 Tree<RootNodeType>::setValue(const Coord& xyz, const ValueType& value, AccessT& accessor)
1464 {
1465  accessor.setValue(xyz, value);
1466 }
1467 
1468 
1469 template<typename RootNodeType>
1470 inline void
1472 {
1473  mRoot.setActiveState(xyz, true);
1474 }
1475 
1476 
1477 template<typename RootNodeType>
1478 inline void
1480 {
1481  mRoot.setValueOn(xyz, value);
1482 }
1483 
1484 
1485 template<typename RootNodeType>
1486 template<typename ModifyOp>
1487 inline void
1488 Tree<RootNodeType>::modifyValue(const Coord& xyz, const ModifyOp& op)
1489 {
1490  mRoot.modifyValue(xyz, op);
1491 }
1492 
1493 
1494 template<typename RootNodeType>
1495 template<typename ModifyOp>
1496 inline void
1497 Tree<RootNodeType>::modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op)
1498 {
1499  mRoot.modifyValueAndActiveState(xyz, op);
1500 }
1501 
1502 
1503 template<typename RootNodeType>
1504 inline bool
1506 {
1507  return mRoot.probeValue(xyz, value);
1508 }
1509 
1510 
1511 ////////////////////////////////////////
1512 
1513 
1514 template<typename RootNodeType>
1515 inline void
1517  const ValueType& value, bool active)
1518 {
1519  mRoot.addTile(level, xyz, value, active);
1520 }
1521 
1522 
1523 template<typename RootNodeType>
1524 template<typename NodeT>
1525 inline NodeT*
1526 Tree<RootNodeType>::stealNode(const Coord& xyz, const ValueType& value, bool active)
1527 {
1528  this->clearAllAccessors();
1529  return mRoot.template stealNode<NodeT>(xyz, value, active);
1530 }
1531 
1532 
1533 template<typename RootNodeType>
1534 inline typename RootNodeType::LeafNodeType*
1536 {
1537  return mRoot.touchLeaf(xyz);
1538 }
1539 
1540 
1541 template<typename RootNodeType>
1542 inline typename RootNodeType::LeafNodeType*
1544 {
1545  return mRoot.probeLeaf(xyz);
1546 }
1547 
1548 
1549 template<typename RootNodeType>
1550 inline const typename RootNodeType::LeafNodeType*
1551 Tree<RootNodeType>::probeConstLeaf(const Coord& xyz) const
1552 {
1553  return mRoot.probeConstLeaf(xyz);
1554 }
1555 
1556 
1557 template<typename RootNodeType>
1558 template<typename NodeType>
1559 inline NodeType*
1561 {
1562  return mRoot.template probeNode<NodeType>(xyz);
1563 }
1564 
1565 
1566 template<typename RootNodeType>
1567 template<typename NodeType>
1568 inline const NodeType*
1569 Tree<RootNodeType>::probeNode(const Coord& xyz) const
1570 {
1571  return this->template probeConstNode<NodeType>(xyz);
1572 }
1573 
1574 
1575 template<typename RootNodeType>
1576 template<typename NodeType>
1577 inline const NodeType*
1578 Tree<RootNodeType>::probeConstNode(const Coord& xyz) const
1579 {
1580  return mRoot.template probeConstNode<NodeType>(xyz);
1581 }
1582 
1583 
1584 ////////////////////////////////////////
1585 
1586 
1587 template<typename RootNodeType>
1588 inline void
1590 {
1591  this->clearAllAccessors();
1592  return mRoot.clip(bbox);
1593 }
1594 
1595 
1596 template<typename RootNodeType>
1597 inline void
1599 {
1600  this->clearAllAccessors();
1601  for (LeafIter it = this->beginLeaf(); it; ) {
1602  const LeafNodeType* leaf = it.getLeaf();
1603  ++it; // advance the iterator before deleting the leaf node
1604  if (!leaf->isAllocated()) {
1605  this->addTile(/*level=*/0, leaf->origin(), this->background(), /*active=*/false);
1606  }
1607  }
1608 }
1609 
1610 template<typename RootNodeType>
1611 inline Index32
1613 {
1614  Index32 sum = 0;
1615  for (auto it = this->cbeginLeaf(); it; ++it) if (!it->isAllocated()) ++sum;
1616  return sum;
1617 }
1618 
1619 
1620 template<typename RootNodeType>
1621 inline void
1623 {
1624  this->clearAllAccessors();
1625  return mRoot.sparseFill(bbox, value, active);
1626 }
1627 
1628 
1629 template<typename RootNodeType>
1630 inline void
1632 {
1633  this->clearAllAccessors();
1634  return mRoot.denseFill(bbox, value, active);
1635 }
1636 
1637 
1638 template<typename RootNodeType>
1639 inline void
1641 {
1642  this->clearAllAccessors();
1643  mRoot.voxelizeActiveTiles(threaded);
1644 }
1645 
1646 
1647 template<typename RootNodeType>
1650 {
1652  if (Metadata::isRegisteredType(valueType())) {
1653  using MetadataT = TypedMetadata<ValueType>;
1654  result = Metadata::createMetadata(valueType());
1655  if (result->typeName() == MetadataT::staticTypeName()) {
1656  MetadataT* m = static_cast<MetadataT*>(result.get());
1657  m->value() = mRoot.background();
1658  }
1659  }
1660  return result;
1661 }
1662 
1663 
1664 ////////////////////////////////////////
1665 
1666 
1667 template<typename RootNodeType>
1668 inline void
1670 {
1671  this->clearAllAccessors();
1672  other.clearAllAccessors();
1673  switch (policy) {
1674  case MERGE_ACTIVE_STATES:
1675  mRoot.template merge<MERGE_ACTIVE_STATES>(other.mRoot); break;
1676  case MERGE_NODES:
1677  mRoot.template merge<MERGE_NODES>(other.mRoot); break;
1679  mRoot.template merge<MERGE_ACTIVE_STATES_AND_NODES>(other.mRoot); break;
1680  }
1681 }
1682 
1683 
1684 template<typename RootNodeType>
1685 template<typename OtherRootNodeType>
1686 inline void
1687 Tree<RootNodeType>::topologyUnion(const Tree<OtherRootNodeType>& other, const bool preserveTiles)
1688 {
1689  this->clearAllAccessors();
1690  mRoot.topologyUnion(other.root(), preserveTiles);
1691 }
1692 
1693 template<typename RootNodeType>
1694 template<typename OtherRootNodeType>
1695 inline void
1697 {
1698  this->clearAllAccessors();
1699  mRoot.topologyIntersection(other.root());
1700 }
1701 
1702 template<typename RootNodeType>
1703 template<typename OtherRootNodeType>
1704 inline void
1706 {
1707  this->clearAllAccessors();
1708  mRoot.topologyDifference(other.root());
1709 }
1710 
1711 ////////////////////////////////////////
1712 
1713 
1714 /// @brief Helper class to adapt a three-argument (a, b, result) CombineOp functor
1715 /// into a single-argument functor that accepts a CombineArgs struct
1716 template<typename AValueT, typename CombineOp, typename BValueT = AValueT>
1718 {
1719  CombineOpAdapter(CombineOp& _op): op(_op) {}
1720 
1722  op(args.a(), args.b(), args.result());
1723  }
1724 
1725  CombineOp& op;
1726 };
1727 
1728 
1729 template<typename RootNodeType>
1730 template<typename CombineOp>
1731 inline void
1732 Tree<RootNodeType>::combine(Tree& other, CombineOp& op, bool prune)
1733 {
1735  this->combineExtended(other, extendedOp, prune);
1736 }
1737 
1738 
1739 /// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
1740 /// code like this: <tt>aTree.combine(bTree, MyCombineOp(...))</tt>.
1741 template<typename RootNodeType>
1742 template<typename CombineOp>
1743 inline void
1744 Tree<RootNodeType>::combine(Tree& other, const CombineOp& op, bool prune)
1745 {
1747  this->combineExtended(other, extendedOp, prune);
1748 }
1749 
1750 
1751 template<typename RootNodeType>
1752 template<typename ExtendedCombineOp>
1753 inline void
1754 Tree<RootNodeType>::combineExtended(Tree& other, ExtendedCombineOp& op, bool prune)
1755 {
1756  this->clearAllAccessors();
1757  mRoot.combine(other.root(), op, prune);
1758 }
1759 
1760 
1761 /// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
1762 /// code like this: <tt>aTree.combineExtended(bTree, MyCombineOp(...))</tt>.
1763 template<typename RootNodeType>
1764 template<typename ExtendedCombineOp>
1765 inline void
1766 Tree<RootNodeType>::combineExtended(Tree& other, const ExtendedCombineOp& op, bool prune)
1767 {
1768  this->clearAllAccessors();
1769  mRoot.template combine<const ExtendedCombineOp>(other.mRoot, op, prune);
1770 }
1771 
1772 
1773 template<typename RootNodeType>
1774 template<typename CombineOp, typename OtherTreeType>
1775 inline void
1776 Tree<RootNodeType>::combine2(const Tree& a, const OtherTreeType& b, CombineOp& op, bool prune)
1777 {
1779  this->combine2Extended(a, b, extendedOp, prune);
1780 }
1781 
1782 
1783 /// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
1784 /// code like this: <tt>tree.combine2(aTree, bTree, MyCombineOp(...))</tt>.
1785 template<typename RootNodeType>
1786 template<typename CombineOp, typename OtherTreeType>
1787 inline void
1788 Tree<RootNodeType>::combine2(const Tree& a, const OtherTreeType& b, const CombineOp& op, bool prune)
1789 {
1791  this->combine2Extended(a, b, extendedOp, prune);
1792 }
1793 
1794 
1795 template<typename RootNodeType>
1796 template<typename ExtendedCombineOp, typename OtherTreeType>
1797 inline void
1798 Tree<RootNodeType>::combine2Extended(const Tree& a, const OtherTreeType& b,
1799  ExtendedCombineOp& op, bool prune)
1800 {
1801  this->clearAllAccessors();
1802  mRoot.combine2(a.root(), b.root(), op, prune);
1803 }
1804 
1805 
1806 /// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
1807 /// code like the following, where the functor argument is a temporary:
1808 /// <tt>tree.combine2Extended(aTree, bTree, MyCombineOp(...))</tt>.
1809 template<typename RootNodeType>
1810 template<typename ExtendedCombineOp, typename OtherTreeType>
1811 inline void
1812 Tree<RootNodeType>::combine2Extended(const Tree& a, const OtherTreeType& b,
1813  const ExtendedCombineOp& op, bool prune)
1814 {
1815  this->clearAllAccessors();
1816  mRoot.template combine2<const ExtendedCombineOp>(a.root(), b.root(), op, prune);
1817 }
1818 
1819 
1820 ////////////////////////////////////////
1821 
1822 
1823 template<typename RootNodeType>
1824 inline const Name&
1826 {
1827  static std::string sTreeTypeName = []()
1828  {
1829  // @todo use RootNode::NodeChain::foreach() instead
1830  std::vector<Index> dims;
1831  Tree::getNodeLog2Dims(dims);
1832  std::ostringstream ostr;
1833  ostr << "Tree_" << typeNameAsString<BuildType>();
1834  for (size_t i = 1, N = dims.size(); i < N; ++i) { // start from 1 to skip the RootNode
1835  ostr << "_" << dims[i];
1836  }
1837  return ostr.str();
1838  }();
1839  return sTreeTypeName;
1840 }
1841 
1842 
1843 template<typename RootNodeType>
1844 template<typename OtherRootNodeType>
1845 inline bool
1847 {
1848  return mRoot.hasSameTopology(other.root());
1849 }
1850 
1851 
1852 template<typename RootNodeType>
1853 inline bool
1855 {
1856  bbox.reset(); // default invalid bbox
1857 
1858  if (this->empty()) return false; // empty
1859 
1860  mRoot.evalActiveBoundingBox(bbox, false);
1861 
1862  return !bbox.empty();
1863 }
1864 
1865 template<typename RootNodeType>
1866 inline bool
1868 {
1869  bbox.reset(); // default invalid bbox
1870 
1871  if (this->empty()) return false; // empty
1872 
1873  mRoot.evalActiveBoundingBox(bbox, true);
1874 
1875  return !bbox.empty();
1876 }
1877 
1878 
1879 template<typename RootNodeType>
1880 inline bool
1882 {
1883  CoordBBox bbox;
1884  bool notEmpty = this->evalActiveVoxelBoundingBox(bbox);
1885  dim = bbox.extents();
1886  return notEmpty;
1887 }
1888 
1889 
1890 template<typename RootNodeType>
1891 inline bool
1893 {
1894  CoordBBox bbox;
1895  bool notEmpty = this->evalLeafBoundingBox(bbox);
1896  dim = bbox.extents();
1897  return notEmpty;
1898 }
1899 
1900 
1901 template<typename RootNodeType>
1902 inline void
1904 {
1905  minVal = maxVal = zeroVal<ValueType>();
1906  if (ValueOnCIter iter = this->cbeginValueOn()) {
1907  minVal = maxVal = *iter;
1908  for (++iter; iter; ++iter) {
1909  const ValueType& val = *iter;
1910  if (math::cwiseLessThan(val, minVal)) minVal = val;
1911  if (math::cwiseGreaterThan(val, maxVal)) maxVal = val;
1912  }
1913  }
1914 }
1915 
1916 
1917 template<typename RootNodeType>
1918 inline void
1919 Tree<RootNodeType>::getNodeLog2Dims(std::vector<Index>& dims)
1920 {
1921  dims.clear();
1922  RootNodeType::getNodeLog2Dims(dims);
1923 }
1924 
1925 
1926 template<typename RootNodeType>
1927 inline void
1928 Tree<RootNodeType>::print(std::ostream& os, int verboseLevel) const
1929 {
1930  if (verboseLevel <= 0) return;
1931 
1932  /// @todo Consider using hboost::io::ios_precision_saver instead.
1933  struct OnExit {
1934  std::ostream& os;
1935  std::streamsize savedPrecision;
1936  OnExit(std::ostream& _os): os(_os), savedPrecision(os.precision()) {}
1937  ~OnExit() { os.precision(savedPrecision); }
1938  };
1939  OnExit restorePrecision(os);
1940 
1941  std::vector<Index> dims;
1942  Tree::getNodeLog2Dims(dims);// leaf is the last element
1943 
1944  os << "Information about Tree:\n"
1945  << " Type: " << this->type() << "\n";
1946 
1947  os << " Configuration:\n";
1948 
1949  if (verboseLevel <= 1) {
1950  // Print node types and sizes.
1951  os << " Root(" << mRoot.getTableSize() << ")";
1952  if (dims.size() > 1) {
1953  for (size_t i = 1, N = dims.size() - 1; i < N; ++i) {
1954  os << ", Internal(" << (1 << dims[i]) << "^3)";
1955  }
1956  os << ", Leaf(" << (1 << dims.back()) << "^3)\n";
1957  }
1958  os << " Background value: " << mRoot.background() << "\n";
1959  return;
1960  }
1961 
1962  // The following is tree information that is expensive to extract.
1963 
1964  ValueType minVal = zeroVal<ValueType>(), maxVal = zeroVal<ValueType>();
1965  if (verboseLevel > 3) {
1966  // This forces loading of all non-resident nodes.
1968  minVal = extrema.min();
1969  maxVal = extrema.max();
1970  }
1971 
1972  const auto nodeCount = this->nodeCount();//fast
1973  const Index32 leafCount = nodeCount.front();// leaf is the first element
1974  assert(dims.size() == nodeCount.size());
1975 
1976  Index64 totalNodeCount = 0;
1977  for (size_t i = 0; i < nodeCount.size(); ++i) totalNodeCount += nodeCount[i];
1978 
1979  // Print node types, counts and sizes.
1980  os << " Root(1 x " << mRoot.getTableSize() << ")";
1981  if (dims.size() >= 2) {
1982  for (size_t i = 1, N = dims.size() - 1; i < N; ++i) {
1983  os << ", Internal(" << util::formattedInt(nodeCount[N - i]);
1984  os << " x " << (1 << dims[i]) << "^3)";
1985  }
1986  os << ", Leaf(" << util::formattedInt(leafCount);
1987  os << " x " << (1 << dims.back()) << "^3)\n";
1988  }
1989  os << " Background value: " << mRoot.background() << "\n";
1990 
1991  // Statistics of topology and values
1992 
1993  if (verboseLevel > 3) {
1994  os << " Min value: " << minVal << "\n";
1995  os << " Max value: " << maxVal << "\n";
1996  }
1997 
1998  const Index64
1999  numActiveVoxels = this->activeVoxelCount(),
2000  numActiveLeafVoxels = this->activeLeafVoxelCount(),
2001  numActiveTiles = this->activeTileCount();
2002 
2003  os << " Number of active voxels: " << util::formattedInt(numActiveVoxels) << "\n";
2004  os << " Number of active tiles: " << util::formattedInt(numActiveTiles) << "\n";
2005 
2006  Coord dim(0, 0, 0);
2007  Index64 totalVoxels = 0;
2008  if (numActiveVoxels) { // nonempty
2009  CoordBBox bbox;
2010  this->evalActiveVoxelBoundingBox(bbox);
2011  dim = bbox.extents();
2012  totalVoxels = dim.x() * uint64_t(dim.y()) * dim.z();
2013 
2014  os << " Bounding box of active voxels: " << bbox << "\n";
2015  os << " Dimensions of active voxels: "
2016  << dim[0] << " x " << dim[1] << " x " << dim[2] << "\n";
2017 
2018  const double activeRatio = (100.0 * double(numActiveVoxels)) / double(totalVoxels);
2019  os << " Percentage of active voxels: " << std::setprecision(3) << activeRatio << "%\n";
2020 
2021  if (leafCount > 0) {
2022  const double fillRatio = (100.0 * double(numActiveLeafVoxels))
2023  / (double(leafCount) * double(LeafNodeType::NUM_VOXELS));
2024  os << " Average leaf node fill ratio: " << fillRatio << "%\n";
2025  }
2026 
2027  if (verboseLevel > 2) {
2028  Index64 sum = 0;// count the number of unallocated leaf nodes
2029  for (auto it = this->cbeginLeaf(); it; ++it) if (!it->isAllocated()) ++sum;
2030  os << " Number of unallocated nodes: "
2031  << util::formattedInt(sum) << " ("
2032  << (100.0 * double(sum) / double(totalNodeCount)) << "%)\n";
2033  }
2034  } else {
2035  os << " Tree is empty!\n";
2036  }
2037  os << std::flush;
2038 
2039  if (verboseLevel == 2) return;
2040 
2041  // Memory footprint in bytes
2042  const Index64
2043  actualMem = this->memUsage(),
2044  denseMem = sizeof(ValueType) * totalVoxels,
2045  voxelsMem = sizeof(ValueType) * numActiveLeafVoxels;
2046  ///< @todo not accurate for BoolTree (and probably should count tile values)
2047 
2048  os << "Memory footprint:\n";
2049  util::printBytes(os, actualMem, " Actual: ");
2050  util::printBytes(os, voxelsMem, " Active leaf voxels: ");
2051 
2052  if (numActiveVoxels) {
2053  util::printBytes(os, denseMem, " Dense equivalent: ");
2054  os << " Actual footprint is " << (100.0 * double(actualMem) / double(denseMem))
2055  << "% of an equivalent dense volume\n";
2056  os << " Leaf voxel footprint is " << (100.0 * double(voxelsMem) / double(actualMem))
2057  << "% of actual footprint\n";
2058  }
2059 }
2060 
2061 } // namespace tree
2062 } // namespace OPENVDB_VERSION_NAME
2063 } // namespace openvdb
2064 
2065 #endif // OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED
virtual Index64 activeTileCount() const =0
Return the total number of active tiles.
const AValueType & result() const
Get the output value.
Definition: Types.h:613
tbb::concurrent_hash_map< ValueAccessorBase< Tree, true > *, bool > AccessorRegistry
Definition: Tree.h:1015
TreeValueIteratorBase< const Tree, typename RootNodeType::ValueOnCIter > ValueOnCIter
Definition: Tree.h:983
virtual void readTopology(std::istream &, bool saveFloatAsHalf=false)
Read the tree topology from a stream.
Definition: Tree.h:1078
ValueOffIter beginValueOff()
Return an iterator over inactive values (tile and voxel) across all nodes.
Definition: Tree.h:1001
void releaseAccessor(ValueAccessorBase< Tree, true > &) const
Deregister an accessor so that it is no longer automatically cleared.
Definition: Tree.h:1340
bool operator==(const Tree &) const
Definition: Tree.h:276
virtual void writeTopology(std::ostream &, bool saveFloatAsHalf=false) const
Write the tree topology to a stream.
Definition: Tree.h:1087
void parallel_for(int64_t start, int64_t end, std::function< void(int64_t index)> &&task, parallel_options opt=parallel_options(0, Split_Y, 1))
Definition: parallel.h:127
bool hasSameTopology(const Tree< OtherRootNodeType > &other) const
Return true if the given tree has the same node and active value topology as this tree...
Definition: Tree.h:1846
Definition: ImfName.h:28
void writeBuffers(std::ostream &, bool saveFloatAsHalf=false) const override
Write out all data buffers for this tree.
Definition: Tree.h:1265
This struct collects both input and output arguments to "grid combiner" functors used with the tree::...
Definition: Types.h:568
GLenum GLint * range
Definition: glcorearb.h:1925
void setValueOn(const Coord &xyz)
Mark the voxel at the given coordinates as active but don't change its value.
Definition: Tree.h:1471
bool cwiseGreaterThan(const Mat< SIZE, T > &m0, const Mat< SIZE, T > &m1)
Definition: Mat.h:1029
virtual Index64 memUsage() const
Return the total amount of memory in bytes occupied by this tree.
Definition: Tree.h:134
LeafIteratorBase< Tree, typename RootNodeType::ChildOnIter > LeafIter
Iterator over all leaf nodes in this tree.
Definition: Tree.h:962
hboost::math::policies::policy< hboost::math::policies::domain_error< hboost::math::policies::ignore_error >, hboost::math::policies::pole_error< hboost::math::policies::ignore_error >, hboost::math::policies::overflow_error< hboost::math::policies::ignore_error >, hboost::math::policies::underflow_error< hboost::math::policies::ignore_error >, hboost::math::policies::denorm_error< hboost::math::policies::ignore_error >, hboost::math::policies::rounding_error< hboost::math::policies::ignore_error >, hboost::math::policies::evaluation_error< hboost::math::policies::ignore_error >, hboost::math::policies::indeterminate_result_error< hboost::math::policies::ignore_error > > policy
Definition: SYS_MathCbrt.h:35
void fill(const CoordBBox &bbox, const ValueType &value, bool active=true)
Set all voxels within a given axis-aligned box to a constant value.
Definition: Tree.h:478
void stealNodes(ArrayT &array, const ValueType &value, bool state)
Definition: Tree.h:609
LeafCIter cbeginLeaf() const
Return an iterator over all leaf nodes in this tree.
Definition: Tree.h:977
void modifyValueAndActiveState(const Coord &xyz, const ModifyOp &op)
Apply a functor to the voxel at the given coordinates.
Definition: Tree.h:1497
void voxelizeActiveTiles(bool threaded=true)
Densify active tiles, i.e., replace them with leaf-level active voxels.
Definition: Tree.h:1640
void modifyValue(const Coord &xyz, const ModifyOp &op)
Apply a functor to the value of the voxel at the given coordinates and mark the voxel as active...
Definition: Tree.h:1488
virtual Metadata::Ptr getBackgroundValue() const
Return this tree's background value wrapped as metadata.
Definition: Tree.h:65
void attachAccessor(ValueAccessorBase< Tree, false > &) const
Dummy implementations.
Definition: Tree.h:637
static const Name & treeType()
Return the name of this type of tree.
Definition: Tree.h:1825
void
Definition: png.h:1083
TreeValueIteratorBase< Tree, typename RootNodeType::ValueOnIter > ValueOnIter
Definition: Tree.h:982
void addLeaf(LeafNodeType *leaf)
Add the given leaf node to this tree, creating a new branch if necessary. If a leaf node with the sam...
Definition: Tree.h:518
OIIO_UTIL_API bool copy(string_view from, string_view to, std::string &err)
RootNodeType::ChildOffCIter cbeginRootTiles() const
Return an iterator over non-child entries of the root node's table.
Definition: Tree.h:942
Index64 inactiveVoxelCount() const override
Return the number of inactive voxels within the bounding box of all active voxels.
Definition: Tree.h:359
static Metadata::Ptr createMetadata(const Name &typeName)
Create new metadata of the given type.
void stealNodes(ArrayT &array)
Steals all nodes of a certain type from the tree and adds them to a container with the following API:...
Definition: Tree.h:607
GLsizei const GLchar *const * string
Definition: glcorearb.h:814
GLsizei const GLfloat * value
Definition: glcorearb.h:824
void addTile(Index level, const Coord &xyz, const ValueType &value, bool active)
Add a tile containing voxel (x, y, z) at the specified tree level, creating a new branch if necessary...
Definition: Tree.h:1516
Index64 countActiveLeafVoxels(const TreeT &tree, bool threaded=true)
Return the total number of active voxels stored in leaf nodes.
Definition: Count.h:436
Index64 memUsage(const TreeT &tree, bool threaded=true)
Return the total amount of memory in bytes occupied by this tree.
Definition: Count.h:493
int getValueDepth(const Coord &xyz) const
Return the tree depth (0 = root) at which the value of voxel (x, y, z) resides.
Definition: Tree.h:1416
TreeIterTraits provides, for all tree iterators, a begin(tree) function that returns an iterator over...
Definition: Tree.h:1115
void sparseFill(const CoordBBox &bbox, const ValueType &value, bool active=true)
Set all voxels within a given axis-aligned box to a constant value.
Definition: Tree.h:1622
Index64 countInactiveVoxels(const TreeT &tree, bool threaded=true)
Return the total number of inactive voxels in the tree.
Definition: Count.h:461
Base class for tree-traversal iterators over all nodes.
Definition: TreeIterator.h:935
#define OPENVDB_LOG_WARN(mesg)
Definition: logging.h:277
ValueAllCIter beginValueAll() const
Return an iterator over all values (tile and voxel) across all nodes.
Definition: Tree.h:990
DeallocateNodes(std::vector< NodeType * > &nodes)
Definition: Tree.h:1025
GLint level
Definition: glcorearb.h:108
RootNodeType::ChildOffCIter beginRootTiles() const
Return an iterator over non-child entries of the root node's table.
Definition: Tree.h:941
NodeIteratorBase< Tree, typename RootNodeType::ChildOnIter > NodeIter
Iterator over all nodes in this tree.
Definition: Tree.h:956
GLboolean GLboolean GLboolean GLboolean a
Definition: glcorearb.h:1222
#define OPENVDB_DEPRECATED_MESSAGE(msg)
Definition: Platform.h:148
Tree(const OtherTreeType &other, const ValueType &inactiveValue, const ValueType &activeValue, TopologyCopy)
Topology copy constructor from a tree of a different type.
Definition: Tree.h:233
RootNodeType::ChildAllCIter cbeginRootDense() const
Return an iterator over all entries of the root node's table.
Definition: Tree.h:949
RootNodeType & root()
Return this tree's root node.
Definition: Tree.h:281
#define OPENVDB_USE_VERSION_NAMESPACE
Definition: version.h:239
ImageBuf OIIO_API min(Image_or_Const A, Image_or_Const B, ROI roi={}, int nthreads=0)
virtual Index64 activeVoxelCount() const =0
Return the total number of active voxels.
**But if you need a result
Definition: thread.h:613
tree::TreeBase TreeBase
Definition: Grid.h:26
TreeValueIteratorBase< Tree, typename RootNodeType::ValueAllIter > ValueAllIter
Definition: Tree.h:980
virtual Index32 leafCount() const =0
Return the number of leaf nodes.
TreeValueIteratorBase< const Tree, typename RootNodeType::ValueAllCIter > ValueAllCIter
Definition: Tree.h:981
Tree(const ValueType &background)
Empty tree constructor.
Definition: Tree.h:261
bool isValueOff(const Coord &xyz) const
Return true if the value at the given coordinates is inactive.
Definition: Tree.h:452
Index32 unallocatedLeafCount() const override
Return the total number of unallocated leaf nodes residing in this tree.
Definition: Tree.h:1612
void readNonresidentBuffers() const override
Read all of this tree's data buffers that are not yet resident in memory (because delayed loading is ...
Definition: Tree.h:1254
void clip(const CoordBBox &)
Set all voxels that lie outside the given axis-aligned box to the background.
Definition: Tree.h:1589
Index64 memUsage() const override
Return the total amount of memory in bytes occupied by this tree.
Definition: Tree.h:367
ValueOffCIter cbeginValueOff() const
Return an iterator over inactive values (tile and voxel) across all nodes.
Definition: Tree.h:1003
RootNodeType::ChildOffIter beginRootTiles()
Return an iterator over non-child entries of the root node's table.
Definition: Tree.h:943
Index64 countActiveTiles(const TreeT &tree, bool threaded=true)
Return the total number of active tiles in the tree.
Definition: Count.h:482
bool operator!=(const Tree &) const
Definition: Tree.h:277
void topologyIntersection(const Tree< OtherRootNodeType > &other)
Intersects this tree's set of active values with the active values of the other tree, whose ValueType may be different.
Definition: Tree.h:1696
void releaseAllAccessors()
Notify all registered accessors, by calling ValueAccessor::release(), that this tree is about to be d...
Definition: Tree.h:1374
virtual Index64 inactiveVoxelCount() const =0
Return the number of inactive voxels within the bounding box of all active voxels.
Tree4<T, N1, N2, N3>::Type is the type of a four-level tree (Root, Internal, Internal, Leaf) with value type T and internal and leaf node log dimensions N1, N2 and N3, respectively.
Definition: Tree.h:1059
bool evalActiveVoxelBoundingBox(CoordBBox &bbox) const override
Return in bbox the axis-aligned bounding box of all active voxels and tiles.
Definition: Tree.h:1867
ValueAllIter beginValueAll()
Return an iterator over all values (tile and voxel) across all nodes.
Definition: Tree.h:989
Tree & operator=(const Tree &)=delete
void setValueOff(const Coord &xyz)
Mark the voxel at the given coordinates as inactive but don't change its value.
Definition: Tree.h:1424
std::shared_ptr< T > SharedPtr
Definition: Types.h:114
void clear()
Remove all tiles from this tree and all nodes other than the root node.
Definition: Tree.h:1297
void topologyDifference(const Tree< OtherRootNodeType > &other)
Difference this tree's set of active values with the active values of the other tree, whose ValueType may be different. So a resulting voxel will be active only if the original voxel is active in this tree and inactive in the other tree.
Definition: Tree.h:1705
SYS_FORCE_INLINE const_iterator end() const
const AValueType & a() const
Get the A input value.
Definition: Types.h:608
static bool isRegisteredType(const Name &typeName)
Return true if the given type is known by the metadata type registry.
RootNodeType::ChildOnCIter beginRootChildren() const
Return an iterator over children of the root node.
Definition: Tree.h:934
Name valueType() const override
Return the name of the type of a voxel's value (e.g., "float" or "vec3d")
Definition: Tree.h:269
GLdouble n
Definition: glcorearb.h:2008
void getNodes(ArrayT &array)
Adds all nodes of a certain type to a container with the following API:
Definition: Tree.h:1274
Utility routines to output nicely-formatted numeric values.
void readBuffers(std::istream &, bool saveFloatAsHalf=false) override
Read all data buffers for this tree.
Definition: Tree.h:1236
const ValueType & background() const
Return this tree's background value.
Definition: Tree.h:662
bool isType() const
Return true if this tree is of the same type as the template parameter.
Definition: Tree.h:55
tbb::concurrent_hash_map< ValueAccessorBase< const Tree, true > *, bool > ConstAccessorRegistry
Definition: Tree.h:1016
#define OPENVDB_API
Definition: Platform.h:274
LeafCIter beginLeaf() const
Return an iterator over all leaf nodes in this tree.
Definition: Tree.h:976
void operator()(CombineArgs< AValueT, BValueT > &args) const
Definition: Tree.h:1721
ValueAccessors are designed to help accelerate accesses into the OpenVDB Tree structures by storing c...
void print(std::ostream &os=std::cout, int verboseLevel=1) const override
Print statistics, memory usage and other information about this tree.
Definition: Tree.h:1928
BBox< Coord > CoordBBox
Definition: NanoVDB.h:2516
Index64 countInactiveLeafVoxels(const TreeT &tree, bool threaded=true)
Return the total number of inactive voxels stored in leaf nodes.
Definition: Count.h:471
void merge(Tree &other, MergePolicy=MERGE_ACTIVE_STATES)
Efficiently merge another tree into this tree using one of several schemes.
Definition: Tree.h:1669
Index64 activeTileCount() const override
Return the total number of active tiles.
Definition: Tree.h:361
Templated metadata class to hold specific types.
Definition: Metadata.h:121
LeafIter beginLeaf()
Return an iterator over all leaf nodes in this tree.
Definition: Tree.h:975
General-purpose arithmetic and comparison routines, most of which accept arbitrary value types (or at...
TreeBase::Ptr copy() const override
Return a pointer to a deep copy of this tree.
Definition: Tree.h:266
Index64 activeLeafVoxelCount() const override
Return the number of active voxels stored in leaf nodes.
Definition: Tree.h:353
void releaseAccessor(ValueAccessorBase< Tree, false > &) const
Dummy implementations.
Definition: Tree.h:649
LeafIteratorBase< const Tree, typename RootNodeType::ChildOnCIter > LeafCIter
Iterator over all leaf nodes in this tree.
Definition: Tree.h:963
Index32 leafCount() const override
Return the number of leaf nodes.
Definition: Tree.h:340
void attachAccessor(ValueAccessorBase< Tree, true > &) const
Register an accessor for this tree. Registered accessors are automatically cleared whenever one of th...
Definition: Tree.h:1322
NodeCIter beginNode() const
Return an iterator over all nodes in this tree.
Definition: Tree.h:969
bool evalActiveVoxelDim(Coord &dim) const override
Return in dim the dimensions of the axis-aligned bounding box of all active voxels. This is a tighter bounding box than the leaf node bounding box.
Definition: Tree.h:1881
ValueConverter<T>::Type is the type of a tree having the same hierarchy as this tree but a different ...
Definition: Tree.h:197
const RootNodeType & root() const
Return this tree's root node.
Definition: Tree.h:282
Functions to count tiles, nodes or voxels in a grid.
Tree3<T, N1, N2>::Type is the type of a three-level tree (Root, Internal, Leaf) with value type T and...
Definition: Tree.h:1049
const ValueType & max() const
Return the maximum value.
Definition: Stats.h:59
bool cwiseLessThan(const Mat< SIZE, T > &m0, const Mat< SIZE, T > &m1)
Definition: Mat.h:1015
Helper class to adapt a three-argument (a, b, result) CombineOp functor into a single-argument functo...
Definition: Tree.h:1717
bool probeValue(const Coord &xyz, ValueType &value) const
Get the value of the voxel at the given coordinates.
Definition: Tree.h:1505
ValueOffCIter beginValueOff() const
Return an iterator over inactive values (tile and voxel) across all nodes.
Definition: Tree.h:1002
const NodeType * probeConstNode(const Coord &xyz) const
Return a pointer to the node of type NodeType that contains voxel (x, y, z). If no such node exists...
Definition: Tree.h:1578
Index64 inactiveLeafVoxelCount() const override
Return the number of inactive voxels stored in leaf nodes.
Definition: Tree.h:355
const LeafNodeType * probeLeaf(const Coord &xyz) const
Return a pointer to the leaf node that contains voxel (x, y, z). If no such node exists, return nullptr.
Definition: Tree.h:553
Templated class to compute the minimum and maximum values.
Definition: Stats.h:30
void attachAccessor(ValueAccessorBase< const Tree, false > &) const
Dummy implementations.
Definition: Tree.h:638
GLboolean GLboolean GLboolean b
Definition: glcorearb.h:1222
void operator()(const tbb::blocked_range< size_t > &range) const
Definition: Tree.h:1027
This base class for ValueAccessors manages registration of an accessor with a tree so that the tree c...
bool evalLeafBoundingBox(CoordBBox &bbox) const override
Return in bbox the axis-aligned bounding box of all active tiles and leaf nodes with active values...
Definition: Tree.h:1854
that also have some descendant prim *whose name begins with which in turn has a child named baz where *the predicate active
typename RootNodeType::ValueType ValueType
Definition: Tree.h:184
NodeIteratorBase< const Tree, typename RootNodeType::ChildOnCIter > NodeCIter
Iterator over all nodes in this tree.
Definition: Tree.h:957
TreeValueIteratorBase< Tree, typename RootNodeType::ValueOffIter > ValueOffIter
Definition: Tree.h:984
The root node of an OpenVDB tree.
bool hasActiveTiles() const
Return true if this tree has any active tiles.
Definition: Tree.h:454
void releaseAccessor(ValueAccessorBase< const Tree, false > &) const
Dummy implementations.
Definition: Tree.h:650
void evalMinMax(ValueType &min, ValueType &max) const
Return the minimum and maximum active values in this tree.
Definition: Tree.h:1903
CIterT cbegin() const
Return a const iterator of type CIterT (for example, cbegin<ValueOnCIter>() is equivalent to cbeginVa...
ValueAllCIter cbeginValueAll() const
Return an iterator over all values (tile and voxel) across all nodes.
Definition: Tree.h:991
Base class for typed trees.
Definition: Tree.h:36
Index64 activeVoxelCount() const override
Return the total number of active voxels.
Definition: Tree.h:357
Index32 nonLeafCount() const override
Return the number of non-leaf nodes.
Definition: Tree.h:351
virtual Index32 nonLeafCount() const =0
Return the number of non-leaf nodes.
TreeValueIteratorBase< const Tree, typename RootNodeType::ValueOffCIter > ValueOffCIter
Definition: Tree.h:985
static void getNodeLog2Dims(std::vector< Index > &dims)
Traverse the type hierarchy of nodes, and return, in dims, a list of the Log2Dims of nodes in order f...
Definition: Tree.h:1919
const ValueType & getValue(const Coord &xyz) const
Return the value of the voxel at the given coordinates.
Definition: Tree.h:1399
typename RootNodeType::LeafNodeType LeafNodeType
Definition: Tree.h:186
Tree(const Tree &other)
Deep copy constructor.
Definition: Tree.h:207
ConstAccessorRegistry mConstAccessorRegistry
Definition: Tree.h:1040
ValueOnCIter beginValueOn() const
Return an iterator over active values (tile and voxel) across all nodes.
Definition: Tree.h:996
void readTopology(std::istream &, bool saveFloatAsHalf=false) override
Read the tree topology from a stream.
Definition: Tree.h:1217
Index64 countActiveVoxels(const TreeT &tree, bool threaded=true)
Return the total number of active voxels in the tree.
Definition: Count.h:413
virtual void print(std::ostream &os=std::cout, int verboseLevel=1) const
Print statistics, memory usage and other information about this tree.
Definition: Tree.h:1095
const ValueType & min() const
Return the minimum value.
Definition: Stats.h:56
LeafData & operator=(const LeafData &)=delete
typename RootNodeType::BuildType BuildType
Definition: Tree.h:185
math::MinMax< typename TreeT::ValueType > minMax(const TreeT &tree, bool threaded=true)
Return the minimum and maximum active values in this tree.
Definition: Count.h:516
const LeafNodeType * probeConstLeaf(const Coord &xyz) const
Return a pointer to the leaf node that contains voxel (x, y, z). If no such node exists, return nullptr.
Definition: Tree.h:1551
ValueOnIter beginValueOn()
Return an iterator over active values (tile and voxel) across all nodes.
Definition: Tree.h:995
Base class for tree-traversal iterators over tile and voxel values.
Definition: TreeIterator.h:616
void setValue(const Coord &xyz, const ValueType &value)
Set the value of the voxel at the given coordinates and mark the voxel as active. ...
Definition: Tree.h:1448
GLuint GLfloat * val
Definition: glcorearb.h:1608
ImageBuf OIIO_API max(Image_or_Const A, Image_or_Const B, ROI roi={}, int nthreads=0)
RootNodeType::ChildAllIter beginRootDense()
Return an iterator over all entries of the root node's table.
Definition: Tree.h:950
NodeCIter cbeginNode() const
Return an iterator over all nodes in this tree.
Definition: Tree.h:970
RootNodeType::ChildOnIter beginRootChildren()
Return an iterator over children of the root node.
Definition: Tree.h:936
NodeT * stealNode(const Coord &xyz, const ValueType &value, bool active)
Return a pointer to the node of type NodeT that contains voxel (x, y, z) and replace it with a tile o...
Definition: Tree.h:1526
void getIndexRange(CoordBBox &bbox) const override
Min and max are both inclusive.
Definition: Tree.h:665
GA_API const UT_StringHolder N
FormattedInt< IntT > formattedInt(IntT n)
Definition: Formats.h:118
SharedPtr< const TreeBase > ConstPtr
Definition: Tree.h:40
void combine2Extended(const Tree &a, const OtherTreeType &b, ExtendedCombineOp &op, bool prune=false)
Definition: Tree.h:1798
**If you just want to fire and args
Definition: thread.h:609
RootNodeType::ChildOnCIter cbeginRootChildren() const
Return an iterator over children of the root node.
Definition: Tree.h:935
LeafNodeType * probeLeaf(const Coord &xyz)
Return a pointer to the leaf node that contains voxel (x, y, z). If no such node exists, return nullptr.
Definition: Tree.h:1543
void combine2(const Tree &a, const OtherTreeType &b, CombineOp &op, bool prune=false)
Definition: Tree.h:1776
OPENVDB_API int printBytes(std::ostream &os, uint64_t bytes, const std::string &head="", const std::string &tail="\n", bool exact=false, int width=8, int precision=3)
NodeType * probeNode(const Coord &xyz)
Return a pointer to the node of type NodeType that contains voxel (x, y, z). If no such node exists...
Definition: Tree.h:1560
const Name & type() const override
Return the name of this type of tree.
Definition: Tree.h:274
Definition: core.h:1131
void clipUnallocatedNodes() override
Replace with background tiles any nodes whose voxel buffers have not yet been allocated.
Definition: Tree.h:1598
RootNodeType::ChildAllCIter beginRootDense() const
Return an iterator over all entries of the root node's table.
Definition: Tree.h:948
Fp4 BuildType
Definition: NanoVDB.h:5565
Tag dispatch class that distinguishes topology copy constructors from deep copy constructors.
Definition: Types.h:683
const BValueType & b() const
Get the B input value.
Definition: Types.h:610
ValueOnCIter cbeginValueOn() const
Return an iterator over active values (tile and voxel) across all nodes.
Definition: Tree.h:997
virtual const Name & type() const =0
Return the name of this tree's type.
void prune(TreeT &tree, typename TreeT::ValueType tolerance=zeroVal< typename TreeT::ValueType >(), bool threaded=true, size_t grainSize=1)
Reduce the memory footprint of a tree by replacing with tiles any nodes whose values are all the same...
Definition: Prune.h:335
Metadata::Ptr getBackgroundValue() const override
Return this tree's background value wrapped as metadata.
Definition: Tree.h:1649
NodeIter beginNode()
Return an iterator over all nodes in this tree.
Definition: Tree.h:968
bool isValueOn(const Coord &xyz) const
Return true if the value at the given coordinates is active.
Definition: Tree.h:450
bool evalLeafDim(Coord &dim) const override
Return in dim the dimensions of the axis-aligned bounding box of all leaf nodes.
Definition: Tree.h:1892
IterT begin()
Return an iterator of type IterT (for example, begin<ValueOnIter>() is equivalent to beginValueOn())...
Definition: Tree.h:1197
void prune(const ValueType &tolerance=zeroVal< ValueType >())
Reduce the memory footprint of this tree by replacing with tiles any nodes whose values are all the s...
Definition: Tree.h:507
LeafNodeType * touchLeaf(const Coord &xyz)
Return a pointer to the leaf node that contains voxel (x, y, z). If no such node exists, create one that preserves the values and active states of all voxels.
Definition: Tree.h:1535
Tree(const OtherTreeType &other, const ValueType &background, TopologyCopy)
Topology copy constructor from a tree of a different type.
Definition: Tree.h:254
bool empty() const
Return true if this tree contains no nodes other than the root node and no tiles other than backgroun...
Definition: Tree.h:620
void setActiveState(const Coord &xyz, bool on)
Set the active state of the voxel at the given coordinates but don't change its value.
Definition: Tree.h:1440
type
Definition: core.h:1059
FMT_INLINE void print(format_string< T...> fmt, T &&...args)
Definition: core.h:2976
std::vector< Index32 > nodeCount() const override
Definition: Tree.h:344
void denseFill(const CoordBBox &bbox, const ValueType &value, bool active=true)
Set all voxels within a given axis-aligned box to a constant value and ensure that those voxels are a...
Definition: Tree.h:1631
void topologyUnion(const Tree< OtherRootNodeType > &other, const bool preserveTiles=false)
Union this tree's set of active values with the active values of the other tree, whose ValueType may ...
Definition: Tree.h:1687
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition: version.h:119
bool ValueType
Definition: NanoVDB.h:5729
void setValueOnly(const Coord &xyz, const ValueType &value)
Set the value of the voxel at the given coordinates but don't change its active state.
Definition: Tree.h:1455
math::Extrema extrema(const IterT &iter, bool threaded=true)
Iterate over a scalar grid and compute extrema (min/max) of the values of the voxels that are visited...
Definition: Statistics.h:354
Tree5<T, N1, N2, N3, N4>::Type is the type of a five-level tree (Root, Internal, Internal, Internal, Leaf) with value type T and internal and leaf node log dimensions N1, N2, N3 and N4, respectively.
Definition: Tree.h:1068
void combine(Tree &other, CombineOp &op, bool prune=false)
Definition: Tree.h:1732
Internal table nodes for OpenVDB trees.
Index treeDepth() const override
Return the depth of this tree.
Definition: Tree.h:338
#define OPENVDB_THROW(exception, message)
Definition: Exceptions.h:74
void combineExtended(Tree &other, ExtendedCombineOp &op, bool prune=false)
Definition: Tree.h:1754
void clearAllAccessors()
Clear all registered accessors.
Definition: Tree.h:1356
void writeTopology(std::ostream &, bool saveFloatAsHalf=false) const override
Write the tree topology to a stream.
Definition: Tree.h:1227
Base class for tree-traversal iterators over all leaf nodes (but not leaf voxels) ...
Tree(const Tree< OtherRootType > &other)
Value conversion deep copy constructor.
Definition: Tree.h:218
PcpNodeRef_ChildrenIterator begin(const PcpNodeRef::child_const_range &r)
Support for range-based for loops for PcpNodeRef children ranges.
Definition: node.h:558