On this page |
The Hard Constraint Relationship DOP is one of several constraint
relationship data types. These constraint relationships are attached as
subdata to a Constraint node to control the
relationship between the Anchor nodes attached to the Constraint.
Hard Constraint Relationship DOPs are already built into high level
assets such as the RBD Pin Constraint,
so it is
usually not necessary to deal with them directly. Further, both the Hard
Constraint Relationship DOP and the
Spring Constraint
Relationship are built into the
Constraint
Relationship DOP.
Solvers are expected to ensure that the Anchors of a Hard Constraint Relationship always evaluate to the same value.
Parameters ¶
Data Options ¶
Bullet Data ¶
The following parameters are used by the Bullet Solver.
Rest Length
This parameter allows the relationship to be satisfied when the Anchors are separated by a non-zero distance.
If this value is non-zero, then the Anchor values will actually be pushed apart in an attempt to maintain the specified rest length between them.
Constraint Force Mixing
Increasing this value will make the constraint spongier, and may increase the stability of the simulation. The constraint may be violated by an amount proportional to this parameter times the force that is needed to enforce the constraint.
Error Reduction Parameter
Specifies what proportion of the constraint error will be fixed during the next simulation step. If ERP is set to 0, constrained objects will drift apart as the simulation proceeds. If ERP is set to 1, the solver will attempt to fix all constraint error during the next simulation step (however, this may result in instability in some situations). A value between 0.1 and 0.8 is recommended for most simulations.
Angular Motor ¶
Number of Motors
Specifies the number of axes that the angular motor is enabled for.
Axis 1
The direction of the first axis of rotation in the local space of the objects.
Axis 2
The direction of the second axis of rotation. This should be perpendicular to Axis 1. The third axis is calculated as the cross product of Axis 1 and Axis 2.
Relative Angular Velocity
The target relative angular velocity around each of the enabled rotation axes.
Max Impulse
The maximum impulse that the solver is allowed to apply to enforce the target angular velocity. This controls the strength of the motor.
Constraint Iterations
If greater than zero, overrides the number of iterations performed by
the constraint solver for this constraint. If some groups of
constraints require more iterations than others, this parameter can be
used instead of globally increasing the number of iterations on the
solver.
Disable Collisions
Disables collision detection between the constrained pair of objects.
Guide Options ¶
Radius
Indicates the radius of the sphere that appears at the
constraint anchor positions in the viewport as guide geometry.
Whether or not to display the guide geometry depends on the
Constraint node to which this relationship
is attached.
Color
Controls the color of the constraint guide geometry.
Show Object Link
This parameter controls the display of guide geometry connecting the constraint to the constrained object.
Parameter Operations
Each data option parameter has an associated menu which specifies how that parameter operates.
Use Default
Use the value from the Default Operation menu.
Set Initial
Set the value of this parameter only when this data is created. On all subsequent timesteps, the value of this parameter is not altered. This is useful for setting up initial conditions like position and velocity.
Set Always
Always set the value of this parameter. This is useful when specific keyframed values are required over time. This could be used to keyframe the position of an object over time, or to cause the geometry from a SOP to be refetched at each timestep if the geometry is deforming.
You can also use this setting in
conjunction with the local variables for a parameter value to
modify a value over time. For example, in the X Position, an
expression like $tx + 0.1
would cause the object to
move 0.1 units to the right on each timestep.
Set Never
Do not ever set the value of this parameter. This option is most useful when using this node to modify an existing piece of data connected through the first input.
For example, an RBD State
DOP may want to animate just the mass of an
object, and nothing else. The Set Never option could be used
on all parameters except for Mass, which would use Set
Always.
Default Operation
For any parameters with their Operation menu set to Use Default, this parameter controls what operation is used.
This parameter has the same menu options and meanings as the Parameter Operations menus, but without the Use Default choice.
Data Sharing
Controls the way in which the data created by this node is shared among multiple objects in the simulation.
Data sharing can greatly reduce the memory footprint of a simulation, but at the expense of requiring all objects to have exactly the same data associated with them.
Activation
Determines if this node should do anything on a given timestep and for a particular object. If this parameter is an expression, it is evaluated for each object (even if data sharing is turned on).
If it evaluates to a non-zero value, then the data is attached to that object. If it evaluates to zero, no data is attached, and data previously attached by this node is removed.
Group
When an object connector is attached to the first input of this node, this parameter can be used to choose a subset of those objects to be affected by this node.
Data Name
Indicates the name that should be used to attach the data to an object or other piece of data. If the Data Name contains a “/” (or several), that indicates traversing inside subdata.
For example, if the Fan Force DOP has the default Data Name
“Forces/Fan”. This attaches the data with the name “Fan” to an
existing piece of data named “Forces”. If no data named “Forces”
exists, a simple piece of container data is created to hold the
“Fan” subdata.
Different pieces of data have different requirements on what names should be used for them. Except in very rare situations, the default value should be used. Some exceptions are described with particular pieces of data or with solvers that make use of some particular type of data.
Unique Data Name
Turning on this parameter modifies the Data Name parameter value to ensure that the data created by this node is attached with a unique name so it will not overwrite any existing data.
With this parameter turned off, attaching two pieces of data with the same name will cause the second one to replace the first. There are situations where each type of behavior is desirable.
If an object
needs to have several Fan Forces blowing on it, it is
much easier to use the Unique Data Name feature to ensure that
each fan does not overwrite a previous fan rather than trying to
change the Data Name of each fan individually to avoid
conflicts.
On the other hand, if an object is known to have RBD
State data already attached to it, leaving this
option turned off will allow some new
RBD State
data to overwrite the existing data.
Inputs ¶
First Input
This optional input can be used to control which simulation objects are modified by this node. Any objects connected through this input and which match the Group parameter field will be modified.
If this input is not connected, this node can be used in conjunction with an Apply Data node, or can be used as an input to another data node.
All Other Inputs
If this node has more input connectors, other data nodes can be attached to act as modifiers for the data created by this node.
The specific types of subdata that are meaningful vary from node to
node. Click an input connector to see a list of available
data nodes that can be meaningfully attached.
Outputs ¶
First Output
The operation of this output depends on what inputs are connected to this node. If an object stream is input to this node, the output is also an object stream containing the same objects as the input (but with the data from this node attached).
If no object stream is
connected to this node, the output is a data output. This data
output can be connected to an Apply Data DOP,
or connected directly to a data input of another data node, to
attach the data from this node to an object or another piece of
data.
Locals ¶
channelname
This DOP node defines a local variable for each channel and parameter on the Data Options page, with the same name as the channel. So for example, the node may have channels for Position (positionx, positiony, positionz) and a parameter for an object name (objectname).
Then there will also be local variables with the names positionx, positiony, positionz, and objectname. These variables will evaluate to the previous value for that parameter.
This previous value is always stored as part of the data attached to the object being processed. This is essentially a shortcut for a dopfield expression like:
dopfield($DOPNET, $OBJID, dataName, "Options", 0, channelname)
If the data does not already exist, then a value of zero or an empty string will be returned.
DATACT
This value is the simulation time (see variable ST) at which the current data was created. This value may not be the same as the current simulation time if this node is modifying existing data, rather than creating new data.
DATACF
This value is the simulation frame (see variable SF) at which the current data was created. This value may not be the same as the current simulation frame if this node is modifying existing data, rather than creating new data.
RELNAME
This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).
In this case, this value is set to the name of the relationship to which the data is being attached.
RELOBJIDS
This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).
In this case, this value is set to a string that is a space separated list of the object identifiers for all the Affected Objects of the relationship to which the data is being attached.
RELOBJNAMES
This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).
In this case, this value is set to a string that is a space separated list of the names of all the Affected Objects of the relationship to which the data is being attached.
RELAFFOBJIDS
This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).
In this case, this value is set to a string that is a space separated list of the object identifiers for all the Affector Objects of the relationship to which the data is being attached.
RELAFFOBJNAMES
This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).
In this case, this value is set to a string that is a space separated list of the names of all the Affector Objects of the relationship to which the data is being attached.
ST
The simulation time for which the node is being evaluated.
Depending on the settings of the DOP Network
Offset Time and Scale Time parameters,
this value may not be equal to the current Houdini time
represented by the variable T.
ST is guaranteed to have a value of zero at the
start of a simulation, so when testing for the first timestep of a
simulation, it is best to use a test like $ST == 0
, rather than
$T == 0
or $FF == 1
.
SF
The simulation frame (or more accurately, the simulation time step number) for which the node is being evaluated.
Depending on the settings of the DOP Network parameters,
this value may not be equal to the current Houdini frame number
represented by the variable F. Instead, it is equal to
the simulation time (ST) divided by the simulation timestep size
(TIMESTEP).
TIMESTEP
The size of a simulation timestep. This value is useful for scaling values that are expressed in units per second, but are applied on each timestep.
SFPS
The inverse of the TIMESTEP value. It is the number of timesteps per second of simulation time.
SNOBJ
The number of objects in the simulation. For nodes that
create objects such as the Empty Object DOP,
SNOBJ increases for each object that is evaluated.
A good way to guarantee unique object names is to use an expression
like object_$SNOBJ
.
NOBJ
The number of objects that are evaluated by the current node during this timestep. This value is often different from SNOBJ, as many nodes do not process all the objects in a simulation.
NOBJ may return 0 if the node does not
process each object sequentially (such as the Group
DOP).
OBJ
The index of the specific object being processed by the node. This value always runs from zero to NOBJ-1 in a given timestep. It does not identify the current object within the simulation like OBJID or OBJNAME; it only identifies the object’s position in the current order of processing.
This value is useful for generating a
random number for each object, or simply splitting the objects into
two or more groups to be processed in different ways. This value
is -1 if the node does not process objects sequentially (such
as the Group DOP).
OBJID
The unique identifier for the object being processed. Every object is assigned an integer value that is unique among all objects in the simulation for all time. Even if an object is deleted, its identifier is never reused. This is very useful in situations where each object needs to be treated differently, for example, to produce a unique random number for each object.
This value is also the best way to look up information on an object using the dopfield expression function.
OBJID is -1 if the node does not process objects
sequentially (such as the Group DOP).
ALLOBJIDS
This string contains a space-separated list of the unique object identifiers for every object being processed by the current node.
ALLOBJNAMES
This string contains a space-separated list of the names of every object being processed by the current node.
OBJCT
The simulation time (see variable ST) at which the current object was created.
To check if an object was created
on the current timestep, the expression $ST == $OBJCT
should
always be used.
This value is zero if the node does not process
objects sequentially (such as the Group DOP).
OBJCF
The simulation frame (see variable SF) at which the current object was created. It is equivalent to using the dopsttoframe expression on the OBJCT variable.
This value is zero if the node does not process objects
sequentially (such as the Group DOP).
OBJNAME
A string value containing the name of the object being processed.
Object names are not guaranteed to be unique within a simulation. However, if you name your objects carefully so that they are unique, the object name can be a much easier way to identify an object than the unique object identifier, OBJID.
The object name can
also be used to treat a number of similar objects (with the same
name) as a virtual group. If there are 20 objects named “myobject”,
specifying strcmp($OBJNAME, "myobject") == 0
in the activation field
of a DOP will cause that DOP to operate on only those 20 objects.
This value is the empty string if the node does not process objects
sequentially (such as the Group DOP).
DOPNET
A string value containing the full path of the current DOP network. This value is most useful in DOP subnet digital assets where you want to know the path to the DOP network that contains the node.
Note
Most dynamics nodes have local variables with the same names as the
node’s parameters. For example, in a Position DOP,
you could write the expression:
$tx + 0.1
…to make the object move 0.1 units along the X axis at each timestep.
See also |